首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An L1210 cell line (JT-1), which can grow in medium supplemented with 1 nM folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37 degrees C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23 +/- 0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37 degrees C remained as unmetabolized folic acid. Binding was also rapid at 0 degrees C but uptake at the plateau was only one-half the value obtained at 37 degrees C. Half-maximal saturation of the binding component (KD) occurred at a folate concentration of 0.065 nM at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (KD = 2.0 nM). 5-Methyltetrahydrofolate was also bound by this component (Ki = 13 nM at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (Ki = 45 nM) and methotrexate (Ki = 325 nM). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500 nM caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Serine hydroxymethyltransferase and the trifunctional enzyme C1-tetrahydrofolate synthase have been purified to near homogeneity from L1210 cells. Kinetic constants (Km and kcat) have been determined for both folate and non-folate substrates. The effect of increasing glutamate chain length on affinity and catalytic efficiency were determined for the four activities. The studies show that the structural and catalytic properties of the two L1210 enzymes are very similar to the corresponding enzymes purified from rabbit liver. Antibodies to both rabbit serine hydroxymethyltransferase and C1-tetrahydrofolate synthase cross-react with the corresponding L1210 enzymes. The intracellular concentration of active sites of serine hydroxymethyltransferase and C1-tetrahydrofolate synthase in L1210 cells are both 9 microM. The combined concentration of these two enzymes exceeds the previously reported concentration of 10 microM for total intracellular folates. A network thermodynamic computer model of one carbon metabolism (Seither, R. L., Trent, D. F., Mikulecky, D. C., Rape, T. J., and Goldman, I. D. (1989) J. Biol. Chem. 264, 17016-17023) suggests that complete inhibition of cytosolic serine hydroxymethyltransferase would neither significantly decrease the rates of biosynthesis of purines and thymidylate nor significantly alter the rate of interconversion of tetrahydrofolate cofactors to dihydrofolate with subsequent inhibition of dihydrofolate reductase.  相似文献   

3.
The regulation of folate and folate analogue metabolism was studied in vitro by using purified hog liver folylpolyglutamate synthetase as a model system and in vivo in cultured mammalian cells. The types of folylpolyglutamates that accumulate in vivo in hog liver, and changes in cellular folate levels and folylpolyglutamate distributions caused by physiological and nutritional factors such as changes in growth rates and methionine, folate, and vitamin B12 status, can be mimicked in vitro by using purified enzyme. Folylpolyglutamate distributions can be explained solely in terms of the substrate specificity of folylpolyglutamate synthetase and can be modeled by using kinetic parameters obtained with purified enzyme. Low levels of folylpolyglutamate synthetase activity are normally required for the cellular metabolism of folates to retainable polyglutamate forms, and consequently folate retention and concentration, while higher levels of activity are required for the synthesis of the long chain length derivatives that are found in mammalian tissues. The synthesis of very long chain derivatives, which requires tetrahydrofolate polyglutamates as substrates, is a very slow process in vivo. The slow metabolism of 5-methyltetrahydrofolate to retainable polyglutamate forms causes the decreased tissue retention of folate in B12 deficiency. Although cellular folylpolyglutamate distributions change in response to nutritional and physiological modulations, it is unlikely that these changes play a regulatory role in one-carbon metabolism as folate distributions respond only slowly. 4-Aminofolates are metabolized to retainable forms at a slow rate compared to folates. Although folate accumulation by cells is not very responsive to changes in folylpolyglutamate synthetase levels and cellular glutamate concentrations, cellular accumulation of anti-folate agents would be highly responsive to any factor that changes the expression of folylpolyglutamate synthetase activity.  相似文献   

4.
Summary An L1210 cell line (JT-1), which can grow in medium supplemented with 1nm folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37°C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23±0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37°C remained as unmetabolized folic acid. Binding was also rapid at 0°C but uptake at the plateau was only one-half the value obtained at 37°C. Half-maximal saturation of the binding component (K D) occurred at a folate concentration of 0.065nm at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (K D=2.0nm). 5-Methyltetrahydrofolate was also bound by this component (K i=13nm at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (K i=45nm) and methotrexate (K i=325nm). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500nm caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein. An additional low-affinity, high-capacity transport system for folate that had been proposed previously was not observed under a variety of experimental conditions in either the adapted or parental cells.  相似文献   

5.
Lactobacillus casei cells contain a 25 kDa, membrane-associated, folate-binding protein (fbp), which is a component of the folate transport system. Polyclonal antibody to fbp (anti-fbp) has been prepared, and conditions have been established for detection and quantitation of the protein. Anti-fbp did not block [3H]folate transport or binding in L. casei cells. As judged by Western blots, the antibody reacted only with fbp on sodium dodecyl sulfate electrophoretograms of Triton X-100 extracts of L. casei membranes. Anti-fbp showed no cross-reactivity with L. casei dihydrofolate reductase, L. casei 5,10-methenyltetrahydrofolate synthetase, L1210 dihydrofolate reductase, rat liver dihydrofolate reductase, or L1210 folate-binding protein. Enzyme-linked immunosorbent assay measurements indicated the presence of an fbp in membranes of Lactobacillus salivarius and two transport-defective sublines of L. casei. Anti-fbp was used to demonstrate selective extraction, with n-butanol, of fbp from a mixture of Triton-solubilized L. casei membrane proteins; repression of fbp in membranes of L. casei cells grown on high levels of folate; and localization of fbp by electron microscopy, using anti-fbp in conjunction with goat anti-rabbit IgG gold conjugate, in L. casei membranes.  相似文献   

6.
5,10-Dideazatetrahydrofolate (DDATHF) is a new antimetabolite designed as an inhibitor of folate metabolism at sites other than dihydrofolate reductase. DDATHF was found to inhibit the growth of L1210 and CCRF-CEM cells in culture at concentrations in the range of 10-30 nM. The inhibitory effect of DDATHF on the growth of L1210 and CCRF-CEM cells was reversed by either hypoxanthine or aminoimidazole carboxamide. Growth inhibition by DDATHF was prevented by addition of both thymidine and hypoxanthine, but not by thymidine alone. 5-Formyltetrahydrofolate reversed the effects of DDATHF in a dose-dependent manner. DDATHF had no appreciable inhibitory activity against either dihydrofolate reductase or thymidylate synthase in vitro, but was found to be an excellent substrate for folylpolyglutamate synthetase. DDATHF had little or no effect on incorporation of either deoxyuridine or thymidine into DNA, in distinct contrast to the effects of the classical dihydrofolate reductase inhibitor, methotrexate. DDATHF was found to deplete cellular ATP and GTP over the same concentrations as those inhibitory to leukemic cell growth, suggesting that the locus of DDATHF action was in the de novo purine biosynthesis pathway. The synthesis of formylglycinamide ribonucleotide in intact L1210 cells was inhibited by DDATHF with the same concentration dependence as inhibition of growth. This suggested that DDATHF inhibited glycinamide ribonucleotide transformylase, the first folate-dependent enzyme of de novo purine synthesis. DDATHF is a potent folate analog which suppresses purine synthesis through direct or indirect inhibition of glycinamide ribonucleotide transformylase.  相似文献   

7.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Uptake of folate by L1210 cells in mediated by a transport system whose primary substrate is adenine. This conclusion is based upon the following evidence: (a) Folate uptake is inhibited competitively by adenine; (b) The Kt for folate transport (430 μM) is comparable to the Ki (450 μM) for folate inhibition of adenine transport; (c) The Kt for adenine transport (21 μM) agrees with the Ki (17 μM) for inhibition of folate transport by adenine; (d) The adenine analogs, 1-methyl-3-isobutylxanthine and 6-mercapto-purine, each inhibit folate and adenine transport to a comparable degree; and (e) Rates of folate and adenine uptake vary in parallel fashion during growth of L1210 cells.  相似文献   

9.
The 5-position of tetrahydrofolate was found to be unusually reactive with low concentrations of formic acid in the presence of a water-soluble carbodiimide. The product of this reaction has neutral and acid ultraviolet spectra and chromatographic behavior consistent with its identity as 5-formyltetrahydrofolate (leucovorin). When enzymatically synthesized (6S)-tetrahydrofolate was used as starting material, the product supported the growth of folatedepleted L1210 cells at one-half the concentration required for authentic (6R,S)-leucovorin. This reaction has been used to produce high specific activity (44 Ci/mmol) [3H](6S)-5-formyltetrahydrofolate in high yield. Experiments with [14C]formic acid indicate that 1 mol of formate reacted per mol of tetrahydrofolate but that no reaction occurred with a variety of other folate compounds. (6S)-5-Formyltetrahydrofolate, labeled in the formyl group with 14C, has also been synthesized using this reaction. These easily produced, labeled folates should allow close examination of the transport and utillization of leucovorin and of the mechanism of reversal of methotrexate toxicity by reduced folate cofactors.  相似文献   

10.
A unique interaction between the folate analog, methotrexate (4-amino-4-deoxy-10-methylpteroylglutamic acid), and the naturally occurring folates in L1210 leukemia and Ehrlich ascites tumor cells provides a useful model for the study of heteroexchange diffusion. The presence of intracellular binding sites with a high affinity for methotrexate but a low affinity for folic acid and its tetrahydrofolate derivatives permit the measurement of true unidirectional influx rates for methotrexate and assure that the trans-stimulation of methotrexate uptake by the intracellular presence of the other folates is due solely to a primary augmentation of this carrier influx mechanism. Further, since free methotrexate does not appear prior to saturation of the binding sites, the reaction between the folates and carrier at the inner cell membrane is undisturbed by methotrexate released from carrier as the complex enters the cell during heteroexchange, facilitating quantitation of the kinetic alterations which occur for methotrexate influx during trans-stimulation.  相似文献   

11.
Sufficient folate supplementation is essential for a multitude of biological processes and diverse organ systems. At least five distinct inherited disorders of folate transport and metabolism are presently known, all of which cause systemic folate deficiency. We identified an inherited brain-specific folate transport defect that is caused by mutations in the folate receptor 1 (FOLR1) gene coding for folate receptor alpha (FRα). Three patients carrying FOLR1 mutations developed progressive movement disturbance, psychomotor decline, and epilepsy and showed severely reduced folate concentrations in the cerebrospinal fluid (CSF). Brain magnetic resonance imaging (MRI) demonstrated profound hypomyelination, and MR-based in vivo metabolite analysis indicated a combined depletion of white-matter choline and inositol. Retroviral transfection of patient cells with either FRα or FRβ could rescue folate binding. Furthermore, CSF folate concentrations, as well as glial choline and inositol depletion, were restored by folinic acid therapy and preceded clinical improvements. Our studies not only characterize a previously unknown and treatable disorder of early childhood, but also provide new insights into the folate metabolic pathways involved in postnatal myelination and brain development.  相似文献   

12.
Cellular folate deficiency impairs one-carbon metabolism, resulting in decreased fidelity of DNA synthesis and inhibition of numerous S-adenosylmethionine-dependent methylation reactions including protein and DNA methylation. Cellular folate concentrations are influenced by folate availability, cellular folate transport efficiency, folate polyglutamylation, and folate turnover specifically through degradation. Folate cofactors are highly susceptible to oxidative degradation in vitro with the exception of 5-formyltetrahydrofolate, which may be a storage form of folate. In this study, we determined the effects of depleting cytoplasmic 5-formyltetrahydrofolate on cellular folate concentrations and folate turnover rates in cell cultures by expressing the human methenyltetrahydrofolate synthetase cDNA in human MCF-7 cells and SH-SY5Y neuroblastoma. Cells with increased methenyltetrahydrofolate synthetase activity exhibited: 1) increased rates of folate turnover, 2) elevated generation of p-aminobenzoylglutamate in culture medium, 3) depressed cellular folate concentrations independent of medium folic acid concentrations, and 4) increased average polyglutamate chain lengths of folate cofactors. These data indicate that folate catabolism and folate polyglutamylation are competitive reactions that influence cellular folate concentrations, and that increased methenyltetrahydrofolate synthetase activity accelerates folate turnover rates, depletes cellular folate concentrations, and may account in part for tissue-specific differences in folate accumulation.  相似文献   

13.
Multidrug resistance of cancer cells is often accompanied by the (over)expression of integral plasma membrane P-glycoprotein, an ATP-dependent transport pump for diverse unrelated compounds. The glutathione detoxification system represents another mechanism that may be involved in multidrug resistance. In the multidrug-resistant L1210/VCR cell line obtained by long-term adaptation of parental L1210 cells to vincristine, an increased expression of P-glycoprotein has previously been established. In this paper, we investigated if the glutathione detoxification system is also involved in the multidrug resistance of these cells. L1210/VCR cells with resistance induced by adaptation to vincristine were also found to be cross-resistant to vinblastine, actinomycin D, mitomycin C, doxorubicin and cyclophosphamide. The resistance of the above cells to vincristine and doxorubicin was accompanied by a depression of drug accumulation (which has not yet been established for other drug). L1210/VCR cells are able to survive better than sensitive cells under conditions when glutathione was depleted by L-buthionine sulfoximine. Nevertheless, L-buthionine sulfoximine did not influence the resistance of L1210/VCR cells to vincristine. Moreover, the presence of sublethal concentrations of cytostatics neither changed the IC50 value of resistant cells to L-buthionine sulfoximine nor the cytoplasmic activity of glutathione S-transferase, the crucial enzyme of glutathione detoxification system. All the above findings indicate that the glutathione detoxification system is not involved in the mechanisms that ensure the multidrug resistance phenotype of L1210/VCR cells.  相似文献   

14.
Structurally diverse anions (folate, 5-formyltetrahydrofolate, AMP, ADP, thiamine pyrophosphate, phosphate, sulfate, and chloride) that are competitive inhibitors of methotrexate influx in L1210 cells also enhance the efflux of methotrexate from these cells. The increase in efflux reaches a maximum of 2- to 4-fold depending upon the anion employed, and the anion concentrations required for half-maximal stimulation of efflux are similar to their Ki values for inhibition of methotrexate influx. A competitive inhibitor of methotrexate uptake (fluorescein-diaminopentane-methotrexate) that is not transported by this system, does not increase methotrexate efflux. These results suggest that the efflux of intracellular methotrexate is coupled to the concomitant uptake of an extracellular anion.  相似文献   

15.
The kinetics of methotrexate transport in L1210 cells are described. Data derived from the measurements of initial influx, the complete time-course of uptake, intracellular steady-state level and unidirectional efflux were found to be consistent with a simple empirical equation containing three constants. Properties of the system include the following: (1) saturability of initial influx; (2) approach to steady state during uptake is expoential; (3) the half-time for drug uptake is independent of external concentration and qual to half-time for efflux; and (4) transport is concentrative at low external concentrations, whereas the reverse is true at high external concentrations. These observations are incorporated into a kinetic model which quantitatively accounts for the data on the basis of the hypothesis that influx and efflux take place via different carriers.  相似文献   

16.
Methotrexate transport in L1210 cells is mediated by a carrier protein that can bind organic and inorganic phosphate compounds in addition to the various folate substrates. The photoaffinity labeling agent, 8-azidoadenosine 5'-monophosphate (8-azido-AMP), also interactis (Ki = 140 microM) with the receptor site for this transport system, and upon irradiation with ultraviolet light, irreversibly inhibits methotrexate uptake. Protection against this inactivation is afforded by either a substrate (methotrexate) or a competitive inhibitor (inorganic phosphate). The light-induced reaction proceeds rapidly (t1/2 = 2 min at 23 degrees C under the conditions described) and produces half-maximal reduction in the transport rate when the 8-azido-AMP concentration is 65 microM. complete photoinactivation of methotrexate transport could not be obtained from a single exposure to 8-azido-AMP (up to 1.0 mM), but it could be achieved by the repetitive illumination of cells in a fresh medium. The phosphate and folate/adenine transport systems of L1210 cells are not affected by irradiation in the presence of 8-azido-AMP.  相似文献   

17.
A binding component with a high affinity for 5-methyltetrahydrofolate (KD = 0.11μm) is present on the external surface of L1210 cells. The amount of binder (1 pmol/mg protein) corresponds to 8 × 104 sites per cell. The participation of this component in the high-affinity 5-methyltetrahydrofolate/methotrexate transport system is supported by similarities in the KD values for 5-methyltetrahydrofolate and methotrexate binding and the Kt values of these compounds for transport. Relative affinities for other folate substrates (aminopterin, 5-formyltetrahydrofolate, and folate) and various competitive inhibitors (thiamine pyrophosphate, ADP, AMP, arsenate, and phosphate) are also similar for both the binding component and the transport system. The measured binding activity does not represent low-temperature transport of substrate into cells, since it is readily saturable with time and is eliminated by either washing the cells with buffer or by the addition of excess unlabeled substrate.  相似文献   

18.
19.
A number of antagonists of nucleotide metabolism with anti-cancer activity affect the de novo purine pathway. To determine the biochemical mechanisms of cytotoxicity of these drugs, assay procedures have been developed for measurement of the levels of intermediates proximal to IMP in the pathway for de novo purine biosynthesis in mouse L1210 leukemia cells. Purine precursors have been synthesized in vitro from [14C]glycine using enzymes from chicken liver. These 14C-labeled intermediates have been used as marker compounds to define retention times for metabolites of leukemia cells separated by HPLC and the chromatographic mobilities of these intermediates after two-dimensional thin-layer chromatography. These new chromatographic procedures have been used in combination to determine the steady-state concentrations for purine precursors in mouse L1210 leukemia cells in the exponential phase of growth: N-formylglycineamide ribotide (16 microM); N-formylglycineamidine ribotide (4.7 microM); 5-aminoimidazole ribotide (4.0 microM); 4-carboxy-5-aminoimidazole ribotide (0.46 microM); N-succino-5-aminoimidazole-4-carboxamide ribotide (11 microM); 5-aminoimidazole-4-carboxamide ribotide (16 microM); 5-formamidoimidazole-4-carboxamide ribotide (2.7 microM); and IMP (57 microM). The metabolic effects of tiazofurin (25 microM) upon mouse L1210 leukemia cells growing in culture define a "metabolic crossover point" at the reaction catalyzed by IMP dehydrogenase (EC 1.1.1.205) which confirms previous reports of inhibition of this enzyme.  相似文献   

20.
Transport of folate compounds into Lactobacillus Casei   总被引:5,自引:0,他引:5  
Transport of folate, 5-methyl tetrahydrofolate, and amethopterin into Lactobacillus casei occurs against a concentration gradient, is pH and temperature dependent, requires glucose, exhibits saturation kinetics, is maximal when cells are harvested in late-log phase, and is repressed by excess folate in the growth medium. Km values are 0.35, 0.90, and 0.21 μm for the influx of folate, 5-methyl tetrahydrofolate, and amethopterin, respectively. Dihydrofolate, tetrahydrofolate, 5-formyl tetrahydrofolate, 5-methyl tetrahydrofolate, aminopterin, and amethopterin are inhibitors of folate influx. Countertransport of 5-methyl tetrahydrofolate is enhanced by various other folate compounds. Uptake of folate, 5-methyl tetrahydrofolate, and amethopterin is inhibited to the same degree by increasing concentrations of iodoacetate. These results indicate that a single system is responsible for transport of a variety of folate compounds into L. casei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号