首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmonics - The interaction between peptide and gold nanoparticle surfaces has been increasingly of interest for bionanotechnology applications. To fully understand how to control such...  相似文献   

2.
金纳米棒的光学性质及其在生物医学领域的应用   总被引:1,自引:0,他引:1  
简要介绍金纳米棒的光学性质和合成方法,重点阐述其在生物医学领域研究的最新进展,并对其今后的研究方向进行展望.金纳米棒是一种胶囊状的金纳米颗粒,具有一个横向等离子共振吸收峰和一个纵向等离子共振吸收峰,分别对应其横轴和纵轴两个特征尺寸.通过调节金纳米棒的长径比,纵向等离子共振吸收峰可由可见光区跨越至近红外光区.金纳米棒这一独特的光学性质在生物和化学传感方面有着广泛而重要的应用前景.  相似文献   

3.
The nonlinear optical properties of single gold nanorods (GNRs) with a large diameter of ~200 nm and a long length of ~800 nm were investigated by using a focused femtosecond (fs) laser light with tunable wavelength. While the linear and nonlinear optical properties of small-sized GNRs have been extensively studied, the nonlinear optical properties of large-sized GNRs and the effects of high-order surface plasmon resonances remain unexplored. Second harmonic generation (SHG) or/and two-photon-induced luminescence (TPL) were observed in the nonlinear response spectra, and their dependences on excitation wavelength and polarization were examined. The scattering and absorption spectra of the small- and large-sized GNRs were compared by using the discrete dipole approximation method. It was found that the extinction of large-sized GNRs is dominated by scattering rather than absorption, which is dominant in small-sized GNRs. In addition, it was revealed that the excitation wavelength-dependent SHG of a GNR is governed by the linear scattering of the GNR and the maximum SHG is achieved at the valley of the scattering spectrum. In comparison, the excitation wavelength dependence of TPL is determined by the absorption spectrum of the GNR. The polarization-dependent SHG of a GNR exhibits a strong dependence on the dimension of the GNR, and it may appear as bipolar distributions parallel or perpendicular to the long axis of the GNR or multipole distributions.  相似文献   

4.
On Optical Properties of Dilute Colloidal Gold   总被引:1,自引:0,他引:1  
Wavelength-dependent complex effective refractive index of dilute colloidal gold, i.e., spherical gold nanoparticles in water was measured using a reflectometer and a spectrophotometer. The spectral data obtained was used for the calculation of the wavelength-dependent complex permittivity of the gold nanoparticle with the aid of the Maxwell Garnett effective medium model for the colloid. It is shown that the wavelength-dependent complex permittivity of gold nanoparticle is different from the complex permittivity of bulk gold. Furthermore, Smakula’s formula is introduced for the calculation of the relative concentration of gold nanoparticles embedded in liquid using absorption data of the colloid.  相似文献   

5.
The scattering and absorption efficiencies of light by individual silicon/gold core/shell spherical nanoparticles in air are analysed theoretically in the framework of Lorenz-Mie formalism. We have addressed the influence of particle-diameter and gold-shell thickness on the scattering and absorption efficiencies of such nano-heterostructures. For comparison, we also considered the famous silica/gold core/shell nanoparticle and pure gold nanoparticle. Our simulation clearly shows that the optical response of the illuminated Si/Au core/shell nanoparticle differs markedly from that of the famous SiO2/Au heterostructure which in turn does not show a significant difference with that of the pure gold nanoparticle. This difference is clearly evident for shell thickness to outer particle radius ratio of less than 0.5. It manifests itself essentially by the occurrence of a strong and sharp absorption resonance beyond the wavelength of 600 nm where the silica/gold and the pure gold nanoparticles never absorb. The characteristics of this resonance are found to be sensitive to the particle diameter and the shell thickness. In particular, its spectral position can be adjusted over a wide spectral range from the visible to the mid-IR by varying the particle diameter and/or the shell thickness.  相似文献   

6.
纳米金颗粒是近年研究最为广泛的纳米材料之一,它具有良好的生物相容性、化学稳定性以及独特的光学性质,在生物分子检测、诊断和治疗方面具有很大的发展潜力。尤其是纳米金显示出特殊的表面等离子体共振现象,导致了粒子表面产生强电磁场,并最终增强了诸如吸收和散射的辐射特性,其散射光强与粒子的尺寸和团聚状态有密切关系。而由于共振现象而产生的纳米金对光的强烈吸收并高效转换为热效应也被用于检测和治疗。此外,与纳米金尺寸相关的局域表面等离子体共振光学特性,能够在粒子附近产生很强的电磁场增强,从而构成表面增强拉曼散射的基础。纳米金在强光照射下也表现出良好的抗光漂白的荧光现象,其特有的荧光寿命也成为检测的一种有效手段。与其他荧光物质作用时,又表现出表面增强荧光特性以及荧光共振能量转移。综述中,在介绍纳米金这些特殊光学性质的基础上,回顾了其在生物分子检测方面的应用进展。  相似文献   

7.
The optical properties of individual noncontinuous shells with different gold coverage are investigated by the single-particle dark field scattering measurements and single-particle surface-enhanced Raman scattering (SERS) measurements at different excitation wavelengths. By controlling the growth of gold seeds, multi-metallic nanogaps/crevices with different optical responses are assembled on silica mesospheres forming noncontinuous shells that can be confirmed through the transmission electron microscope images. We find the surface plasmon resonance of single shell red-shifts from 510 to 680 nm with the increase of gold coverage. At the excitation of 532 and 785 nm, the best enhancements about 2.0?×?105 and 1.1?×?107 are obtained on spheres with ~60 and 83 % gold coverage, respectively. The weak polarization-dependent SERS indicates that the enhancement is from the multi-gaps on single noncontinuous shell. This optical tunable and SERS active noncontinuous gold shell can be applied in biosensing, ultra trace detection, and molecule analysis needing multi-wavelengths excitation.  相似文献   

8.
Gold nanorods are known to exhibit two distinct surface plasmon oscillations namely, transverse and longitudinal bands corresponding to oscillations of conduction electrons along width and length of gold nanorods. Considerable changes in these surface plasmon resonance peak positions occurred when KOH was added to the nanorod solution. Nanorods with initial longitudinal plasmon band at 739, 796, and 895 nm are studied with variation in KOH concentration. While the longitudinal plasmon resonance peak showed blue shift, transverse plasmon resonance peak exhibited only intensity variations. Changes could be attributed to the shape transition of gold nanorods on variation of pH in the solution. Shape transition of gold nanorods is confirmed by transmission electron microscopy images.  相似文献   

9.
Applications based on the optical excitation of the longitudinal surface plasmon resonance of gold nanorods (AuNRs) work at highest efficiency if all component AuNRs can be maximally excited simultaneously. This can be achieved in aligned AuNR structures, such as those embedded in uniaxially stretched polymer films. Since too high heating temperatures during film stretching cause reshaping and alteration of optical properties of the rods, a maximum allowable heating temperature is determined. The alignment of the rods is quantified by an orientational order parameter of 0.92 based on a statistically significant sample of assumed t distributed means and obtained by scanning electron microscopy. We show that a stretched AuNRs-PVA composite film has optical properties that approach the dichroic properties of an idealized ensemble of fully aligned, identical, and non-interacting AuNRs embedded in a PVA film. The idealized system is provided by FDTD simulations of a single AuNR, which we carried out using the size- and shape-adapted dielectric function of gold and the software RSOFT.  相似文献   

10.
Russian Journal of Bioorganic Chemistry - A novel derivative of Kaede protein chromophore was synthesized. The compound showed the shift of absorption and emission maxima to the longwave region in...  相似文献   

11.
The interaction between peptide and silver nanoparticle surfaces has been increasingly of interest for bionanotechnology applications. To fully understand how to control such interactions, we have studied the optical properties of peptide-modified silver nanoparticles. However, the impacts of peptide binding motif upon the surface characteristics and physicochemical properties of nanoparticles remain not yet fully understood. Here, we have prepared sodium citrate-stabilized silver nanoparticles and coated with peptide IVD (ID3). These nanomaterials were characterized by UV-visible, transmission electron microscopy (TEM), and z-potential measurement. The results indicate that silver nanoparticles (AgNP)-peptide interface is generated using ID3 peptide and suggested that the reactivity of peptide is governed by the conformation of the bound peptide on the nanoparticle surface. The peptide-nanoparticle interactions could potentially be used to make specific functionality into the peptide capped nanomaterials and antibacterial applications.  相似文献   

12.

Here, in this report, saponin-capped triangular silver nanocrystals have been synthesized in aqueous system by using only Trigonella foenum-graecum seed extract as a reducing agent. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and atomic force microscope (AFM) have been used for the study of their morphological and structural characterization, which indicate that the synthesized nanoparticles are crystalline in nature with triangular morphology having the edge length of the triangle as 80 nm approximately. UV/Vis study of the nanoparticle solution shows three absorption peaks at wavelength of 360 nm, 432 nm, and 702 nm, and these are respectively related to the transverse and longitudinal oscillations of electron, which remain almost in the same position for more than 6 months, indicating the formation of silver nanocrystals with a higher stability. Further, Fourier transform infrared spectroscopy (FTIR) spectra clearly indicate the capping of nanoparticles by saponin, one of the components of Trigonella foenum-graecum extract.

  相似文献   

13.
Russian Journal of Bioorganic Chemistry - A novel derivative of acetylene Kaede protein chromophore (Z)-2-((4-(diethylamino) phenyl)...  相似文献   

14.
15.
Plasmonics - Bi-functional nanocomposite thin films of fullerene C60 and C70 containing Au NPs were synthesized using thermal co-evaporation method. Different atomic concentrations of Au metal...  相似文献   

16.
Plasmonics - In this paper, the optical and thermoplasmonics properties of nanocomposites consisting of spherical gold nanoparticles (AuNPs) integrated in $${Al}_{2}{O}_{3}$$ matrix are determined...  相似文献   

17.
Described herein is the efficient synthesis and evaluation of bioactive arginine-glycine-aspartic acid (RGD) functionalized polynorbornene-based materials for cell adhesion and spreading. Polynorbornenes containing either linear or cyclic RGD peptides were synthesized by ring-opening metathesis polymerization (ROMP) using the well-defined ruthenium initiator [(H(2)IMes)(pyr)(2)(Cl)(2)Ru═CHPh]. The random copolymerization of three separate norbornene monomers allowed for the incorporation of water-soluble polyethylene glycol (PEG) moieties, RGD cell recognition motifs, and primary amines for postpolymerization cross-linking. Following polymer synthesis, thin-film hydrogels were formed by cross-linking with bis(sulfosuccinimidyl) suberate (BS(3)), and the ability of these materials to support human umbilical vein endothelial cell (HUVEC) adhesion and spreading was evaluated and quantified. When compared to control polymers containing either no peptide or a scrambled RDG peptide, polymers with linear or cyclic RGD at varying concentrations displayed excellent cell adhesive properties in both serum-supplemented and serum-free media. Polymers with cyclic RGD side chains maintained cell adhesion and exhibited comparable integrin binding at a 100-fold lower concentration than those carrying linear RGD peptides. The precise control of monomer incorporation enabled by ROMP allows for quantification of the impact of RGD structure and concentration on cell adhesion and spreading. The results presented here will serve to guide future efforts for the design of RGD functionalized materials with applications in surgery, tissue engineering, and regenerative medicine.  相似文献   

18.

This paper reports on a systematic study of the plasmonic properties of periodic arrays of gold cylindrical nanoparticles in contact with a gold thin film. Depending on the gold film thickness, it observes several plasmon bands. Using a simple analytical model, it is able to assign all these modes and determine that they are due to the coupling of the grating diffraction orders with the propagating surface plasmons travelling along the film. With finite difference time domain (FDTD) simulations, it demonstrates that large field enhancement occurs at the surface of the nanocylinders due to the resonant excitation of these modes. By tilting the sample, it also observes the evolution of the spectral position of these modes and their tuning through nearly the whole visible range is possible. Such plasmonic substrates combining both advantages of the propagative and localised surface plasmons could have large applications in enhanced spectroscopies.

  相似文献   

19.
Second harmonic generation (SHG) imaging microscopy is an important emerging technique for biological research, complementing existing one- and two-photon fluorescence (2PF) methods. A non-linear phenomenon employing light from mode-locked Ti:sapphire or fiber-based lasers, SHG results in intrinsic optical sectioning without the need for a confocal aperture. Furthermore, as a second-order process SHG is confined to loci lacking a center of symmetry, a constraint that is readily satisfied by lipid membranes with only one leaflet stained by a dye. Of particular interest is “resonance-enhanced” SHG from styryl dyes in cellular membranes and the possibility that SHG is sensitive to transmembrane potential. We have previously confirmed this, using simultaneous voltage-clamping and non-linear imaging of cells to find that SHG is up to four times more sensitive to potential than fluorescence. In this work, we have extended these results in two directions. First, with a range of wavelengths available from a mode-locked Ti:sapphire laser and a fiber-based laser, we have more fully investigated SHG and 2PF voltage-sensitivity from ANEP and ASTAP chromophores, obtaining SHG sensitivity spectra that are consistent with resonance enhancements. Second, we have modified our system to coordinate the application of voltage-clamp steps with non-linear image acquisition to more precisely characterize the time dependence of SHG and 2PF voltage sensitivity, finding that, at least for some dyes, SHG responds more slowly than fluorescence to changes in transmembrane potential.  相似文献   

20.
Recent studies have demonstrated that nerves can be stimulated in a variety of ways by the transient heating associated with the absorption of infrared light by water in neuronal tissue. This technique holds great potential for replacing or complementing standard stimulation techniques, due to the potential for increased localization of the stimulus and minimization of mechanical contact with the tissue. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Moreover, thermal modelling suggests that cumulative heating effects might be potentially hazardous when multiple stimulus sites or high laser repetition rates are used. The protocol outlined below describes an enhanced approach to the infrared stimulation of neuronal cells. The underlying mechanism is based on the transient heating associated with the optical absorption of gold nanorods, which can cause triggering of neuronal cell differentiation and increased levels of intracellular calcium activity. These results demonstrate that nanoparticle absorbers can enhance and/or replace the process of infrared neural stimulation based on water absorption, with potential for future applications in neural prostheses and cell therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号