首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
2.
3.
4.
5.
E-cadherin, a calcium-dependent cell-cell adhesion molecule, is expressed in highly specific spatiotemporal patterns throughout metazoan development, notably at sites of embryonic induction. E-cadherin also plays a critical role in regulating cell motility/adhesion, cell proliferation, and apoptosis. We have used the continuously erupting rat incisor as a system for examining the expression of E-cadherin and the associated catenins [alpha-, beta-, gamma-catenin (plakoglobin) and p120(ctn)] during amelogenesis. Using immunhistochemical techniques, we observed expression of alpha-catenin and gamma-catenin in ameloblasts throughout amelogenesis. In contrast, expression of E-cadherin, beta-catenin, and p120(ctn) was strong in presecretory, transitional, and reduced stage ameloblasts (Stages I, III, and V) but was dramatically lower in secretory and maturation stage ameloblasts (Stages II and IV). This expression alternates with the expression pattern we previously reported for the adenomatous polyposis coli protein (APC), a tumor suppressor that competes with E-cadherin for binding to beta-catenin. We suggest that alternate expression of APC and the cadherin-catenin complex is critical for the alterations in cell-cell adhesion and other differentiated cellular characteristics, such as cytoskeletal alterations, that are required for the formation of enamel by ameloblasts.  相似文献   

6.
The tyrosine kinase substrate p120cas (CAS), which is structurally similar to the cell adhesion proteins beta-catenin and plakoglobin, was recently shown to associate with the E-cadherin-catenin cell adhesion complex. beta-catenin, plakoglobin, and CAS all have an Arm domain that consists of 10 to 13 repeats of a 42-amino-acid motif originally described in the Drosophila Armadillo protein. To determine if the association of CAS with the cadherin cell adhesion machinery is similar to that of beta-catenin and plakoglobin, we examined the CAS-cadherin-catenin interactions in a number of cell lines and in the yeast two-hybrid system. In the prostate carcinoma cell line PC3, CAS associated normally with cadherin complexes despite the specific absence of alpha-catenin in these cells. However, in the colon carcinoma cell line SW480, which has negligible E-cadherin expression, CAS did not associate with beta-catenin, plakoglobin, or alpha-catenin, suggesting that E-cadherin is the protein which bridges CAS to the rest of the complex. In addition, CAS did not associate with the adenomatous polyposis coli (APC) tumor suppressor protein in any of the cell lines analyzed. Interestingly, expression of the various CAS isoforms was quite heterogeneous in these tumor cell lines, and in the colon carcinoma cell line HCT116, which expresses normal levels of E-cadherin and the catenins, the CAS1 isoforms were completely absent. By using the yeast two-hybrid system, we confirmed the direct interaction between CAS and E-cadherin and determined that CAS Arm repeats 1 to 10 are necessary and sufficient for this interaction. Hence, like beta-catenin and plakoglobin, CAS interacts directly with E-cadherin in vivo; however, unlike beta-catenin and plakoglobin, CAS does not interact with APC or alpha-catenin.  相似文献   

7.
The adenomatous polyposis coli (APC) tumor suppressor protein plays a critical role in regulating cellular levels of the oncogene product beta-catenin. APC binds to beta-catenin through a series of homologous 15 and 20 amino acid repeats. We have determined the crystal structure of a 15 amino acid beta-catenin binding repeat from APC bound to the armadillo repeat region of beta-catenin. Although it lacks significant sequence homology, the N-terminal half of the repeat binds in a manner similar to portions of E-cadherin and XTcf3, but the remaining interactions are unique to APC. We discuss the implications of this new structure for the design of therapeutics, and present evidence from structural, biochemical and sequence data, which suggest that the 20 amino acid repeats can adopt two modes of binding to beta-catenin.  相似文献   

8.
The tumour suppressor protein adenomatous polyposis coli (APC) regulates the level and the intracellular localisation of the proto-oncoprotein beta-catenin. There are indications that a region comprising seven homologous 20-amino acid residue repeats within the APC protein is responsible for the interaction with beta-catenin and that the phosphorylation of conserved serine residues within these repeats increases the affinity for beta-catenin. We used biophysical methods to analyse the beta-catenin binding of single repeats or repeat combinations as non-phosphorylated or phosphorylated recombinant proteins. The non-phosphorylated repeats showed similar affinities, no matter whether they were tested as single recombinant repeats or in combination with neighbouring repeats. This result makes a cooperative influence between the repetitive motifs unlikely. The phosphorylation of the APC protein was mimicked by specific serine/aspartate mutations, which align to serine residues in the cytoplasmic beta-catenin binding domain of E-cadherin. Remarkably, the mimicked phosphorylation of a serine, which is not involved in beta-catenin interaction in the E-cadherin/beta-catenin complex, led to a significant increase in the APC affinity for beta-catenin. These results indicate structural differences between the E-cadherin/beta-catenin and the APC/beta-catenin complexes and provide quantitative evidence for the importance of the APC phosphorylation for its interaction with beta-catenin.  相似文献   

9.
10.
Interactions between E-cadherin, beta-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell-cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, beta-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and beta-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and beta-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and beta-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of beta-catenin on tyrosine residues, and abolished the interaction of beta-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of beta-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and beta-catenin was reduced by tyrosine phosphorylation of beta-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)-PTP1B. The pairwise binding study showed that GST-E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of beta-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, beta-catenin and PTP1B by a phosphorylation-dependent mechanism.  相似文献   

11.
12.
Beta-catenin is an integral component of E-cadherin dependent cell-cell junctions. Here we show that beta-catenin co-localizes with IQ-domain GTPase-activating protein 1 (IQGAP1), adenomatous polyposis coli (APC), and N-cadherin at actin-positive membrane ruffles in NIH 3T3 fibroblasts. We used deletion mapping to identify the membrane ruffle-targeting region of beta-catenin, localizing it to amino acids 47-217, which overlap the IQGAP1 binding site. Knockdown by small interference RNA (siRNA) revealed IQGAP1-dependent membrane targeting of beta-catenin, APC, and N-cadherin. Transient overexpression of IQGAP1 or N-cadherin increased beta-catenin at membrane ruffles. IQGAP1/APC regulates cell migration, and using a wound healing assay we demonstrate that siRNA-mediated loss of beta-catenin also caused a modest reduction in the rate of cell migration. More significantly, we discovered that beta-catenin is internalized by Arf6-dependent macropinocytosis near sites of membrane ruffling. The beta-catenin macropinosomes co-stained for APC, N-cadherin, and to a lesser extent IQGAP1, and internalization of each binding partner was abrogated by siRNA-dependent knockdown of beta-catenin. In addition, beta-catenin macropinosomes co-localized with the lysosomal marker, lysosome associated membrane protein 1, consistent with their recycling by the late endosomal machinery. Our findings expand on current knowledge of beta-catenin function. We propose that in motile cells beta-catenin is recruited by IQGAP1 and N-cadherin to active membrane ruffles, wherein beta-catenin mediates the internalization and possible recycling of the membrane-associated proteins N-cadherin and APC.  相似文献   

13.
Nuclear accumulation of the complex between beta-catenin and proteins of the T-cell factor (Tcf) family is a hallmark of many cancers. Targeting this interaction for drug development is complicated by the fact that E-cadherin and adenomatous polyposis coli (APC) bind to overlapping sites on beta-catenin. Inhibiting their interactions might actually promote tumor growth. To identify selective beta-catenin binding hot spots of Tcf4, E-cadherin, and APC, array technology with peptides of up to 53 amino acids length was used. Interactions were monitored by a quantitative fluorescent readout, which was shown to represent a monitor of true equilibrium binding constants. We identified minimal binding motifs in the beta-catenin ligands and showed that most of the 15-mer and 20-mer repeats of APC did not interact, at least when non-phosphorylated, and defined a consensus binding motif also present in APC. We confirmed previously found hot spots and identified new ones. The method allowed us to locate a hydrophobic pocket that was relevant for the Tcf, but not the E-cadherin interaction, and would thus constitute an ideal drug target site.  相似文献   

14.
Targeted degradation of beta-catenin by chimeric F-box fusion proteins   总被引:5,自引:0,他引:5  
Adenomatous polyposis coli (APC) tumor suppressor protein, together with Axin and glycogen synthase kinase 3beta (GSK-3beta), forms a Wnt-regulated signaling complex that mediates phosphorylation-dependent degradation of cytoplasmic beta-catenin by ubiquitin-dependent proteolysis. Degradation of phosphorylated beta-catenin is initiated by interaction through the WD40-repeat of a F-box protein beta-TrCP, a component of SCF ubiquitin ligase complex. Mutations in APC, Axin, and beta-catenin that prevent down-regulation of cytoplasmic beta-catenin are found in various types of cancers. In the search for efficient treatment and prevention of malignancies associated with increased levels of cytoplasmic beta-catenin, we created chimeric F-box fusion proteins by replacing the WD40-repeat of beta-TrCP with the beta-catenin-binding domains of Tcf4 and E-cadherin. Expression of chimeric F-box fusion proteins successfully promotes degradation of beta-catenin independently of GSK-3beta-mediated phosphorylation. More importantly, this degradation does not require intact APC protein (pAPC).  相似文献   

15.
16.
Adenomatous polyposis coli (APC) is an important tumour suppressor in the mammalian intestinal epithelium. It binds to beta-catenin and its role as a tumour suppressor depends predominantly on its ability to downregulate soluble beta-catenin, a key effector of the Wnt signalling pathway. However, epithelial cells have a distinct subcellular pool of beta-catenin, or Drosophila Armadillo, which functions as a structural component of adherens junctions. Notably, APC proteins can be associated with these adherens junctions, and recent evidence points to a role for APC in cellular adhesion. Thus, APC--like beta-catenin/Armadillo--may have a dual role in Wnt signal transduction and in cellular adhesion, which could be relevant to its activity as a tumour suppressor.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号