首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tuatara represent the last surviving member of the order Rhynchocephalia, a group of reptiles the members of which first appeared in the fossil record 200 million years ago. We report the existence of extensive minisatellite DNA variation in island populations of tuatara, as revealed by the use of heterologous DNA probes and compare this variation to that found in other vertebrates. Patterns of minisatellite variation within and among populations of tuatara on the Taranga and Marotere Islands off the coast of New Zealand are detailed. Individuals from West Bay and South Cove on Motumuka Island show higher levels of bandsharing than that recorded between randomly sampled individuals from the same island. We suggest that these populations comprise a proportion of closely related individuals and that populations within islands are genetically structured. Moreover, we identified individuals which have high levels of bandsharing with substantial proportions of the sampled population, suggesting close kinship. A pairwise, inter-island comparison of individuals from Motumuka, Whatupuke and Mauimua Islands, reveals significant differences in distribution of restriction fragments in minisatellite DNA profiles.  相似文献   

3.
Historical fragmentation and subsequent isolation has affected the levels of genetic diversity in many lineages of ancient plant taxa. This study investigated the effects of historical processes on Araucaria cunninghamii (Hoop Pine), Araucariaceae, using both RAPD and ISSR markers. While most populations maintain moderate levels of diversity, there is some evidence for reduced genetic variation. Most sampled populations are significantly differentiated from each other, thereby emphasizing the high degree of population structuring in A. cunninghamii. Increased divergence among the northern Queensland populations relative to southern Queensland populations suggests historical pressures have impacted differently on extant population distribution. More research is specifically required into the biology and population demographics of Australian Araucariaceae.  相似文献   

4.
Lange RH  Kilarski W 《Tissue & cell》1986,18(1):117-124
Lipovitellin-phosvitin crystals from oocytes of the sturgeon (Acipenser boeri L.) and the tuatara (Sphenodon punctatus [Gray]) have been shown to he orthorhombic like all such known crystals from vertebrates higher than cyclostomes. Lattice parameters and projected crystal views also resembled closely the hitherto known cases. The high evolutionary conservation of this crystal structure probably reflects a cell-biological significance of the tertiary structure of crystal constituents, especially of the lipovitellines. A comparative consideration of crystallographic data from cyclostomes and higher vertebrates suggests that cyclostomes started with one species and all higher vertebrates with two species of lipovitellin molecules.  相似文献   

5.
Quantitative genetically based traits in dominant and keystone tree species can have extended effects on other biota and also on ecosystem processes. This has direct implications for managed plant systems, where choice of genetic stock in conservation or commercial plantings will affect the ecological and evolutionary trajectory of the associated biotic communities. Hence an understanding of genetic variation in quantitative traits, especially those that relate directly to fitness, should be incorporated into the management of species. In plants, quantitative traits such as foliar defences that mediate the complexity of biotic interactions (e.g. herbivory), may be key fitness traits to consider in the management of gene pools of species that are of high conservation value. In this paper we examine the interactions of an endangered eucalypt species, Eucalyptus morrisbyi and a marsupial herbivore, the common brushtail possum Trichosurus vulpecula. We investigate the genetic variability of resistance of plants sourced from two populations and genetic variability in foliage defences as key quantitative traits that may be essential for survival of this eucalypt species. Trichosurus vulpecula detect clear genetic divergence in the two E. morrisbyi populations as evidenced by their browsing preferences in the field. In addition, trees from the more susceptible population (Calverts Hill) suffered fitness consequences with lower flowering than trees from the more resistant population (Risdon Hills). Field feeding preferences were confirmed in captive feeding trials arguing differences were due to foliar attributes consistent with the genetic‐based differences observed in key chemical and physical foliage traits. Biotic interactions such as herbivory may affect populations of rare plant species. Results of this study highlight the need to understand the degree of genetic differentiation of resistance to herbivores and in the quantitative traits mediating these interactions in species of high conservation value, as these traits affect the adaptive potential of populations.  相似文献   

6.
Identifying adaptive genetic divergence among populations from genome scans   总被引:26,自引:0,他引:26  
The identification of signatures of natural selection in genomic surveys has become an area of intense research, stimulated by the increasing ease with which genetic markers can be typed. Loci identified as subject to selection may be functionally important, and hence (weak) candidates for involvement in disease causation. They can also be useful in determining the adaptive differentiation of populations, and exploring hypotheses about speciation. Adaptive differentiation has traditionally been identified from differences in allele frequencies among different populations, summarised by an estimate of FST. Low outliers relative to an appropriate neutral population-genetics model indicate loci subject to balancing selection, whereas high outliers suggest adaptive (directional) selection. However, the problem of identifying statistically significant departures from neutrality is complicated by confounding effects on the distribution of FST estimates, and current methods have not yet been tested in large-scale simulation experiments. Here, we simulate data from a structured population at many unlinked, diallelic loci that are predominantly neutral but with some loci subject to adaptive or balancing selection. We develop a hierarchical-Bayesian method, implemented via Markov chain Monte Carlo (MCMC), and assess its performance in distinguishing the loci simulated under selection from the neutral loci. We also compare this performance with that of a frequentist method, based on moment-based estimates of FST. We find that both methods can identify loci subject to adaptive selection when the selection coefficient is at least five times the migration rate. Neither method could reliably distinguish loci under balancing selection in our simulations, even when the selection coefficient is twenty times the migration rate.  相似文献   

7.
When a population splits in two and the resulting populations evolve independently, genetic divergence may occur due to mutation and genetic drift. This paper considers the influence these factors have on the genetic composition of two samples drawn from the respective populations at some time after the split. Analytical formulas and numerical examples are given of (i) the probability distribution and moments of the allele frequencies, (ii) the number of alleles in common between the samples, and (iii) the probability that the samples are monomorphic.  相似文献   

8.
This paper considers the effect of the genetic divergence on the genetic composition of three samples drawn from three populations at some time after the populations had split. It generalizes the two-sample case studied earlier by Watterson (1985a). Under the assumptions that (i) mating is at random, (ii) the genes at a locus can be any of infinitely many alleles and all mutants are assumed to be new alleles, and (iii) no selective differences exist, we find the probability distribution of the sample gene configurations. From this distribution the single-sample allelic distribution after one-step and two-step bottlenecks and the allelic distribution in the two-sample case can be obtained as marginal distributions. Some numerical results on the number of alleles in common in the three samples are compared with those obtained by Watterson's simulation method; the agreement is excellent. Also, the probability that the three samples are monomorphic for the same allele is found, and numerical examples are given.  相似文献   

9.
Stingless bees (Meliponini) are one of only two highly eusocial bees, the other being the well studied honey bee (Apini). Unlike Apini, with only 11 species in the single genus Apis, stingless bees are a large and diverse taxon comprising some 60 genera, many of which are poorly known. This is the first attempt to infer a phylogeny of the group that includes the world fauna and extensive molecular data. Understanding the evolutionary relationships of these bees would provide a basis for behavioural studies within an evolutionary framework, illuminating the origins of complex social behaviour, such as the employment of dance and sound to communicate the location of food or shelter. In addition to a global phylogeny, we also provide estimates of divergence times and ancestral biogeograhic distributions of the major groups. Bayesian and maximum likelihood analyses strongly support a principal division of Meliponini into Old and New World groups, with the Afrotropical+Indo‐Malay/Australian clades comprising the sister group to the large Neotropical clade. The meliponine crown clade is inferred to be of late Gondwanan origin (approximately 80 Mya), undergoing radiations in the Afrotropical and Indo‐Malayan/Australasian regions, approximately 50–60 Mya. In the New World, major diversifications occurred approximately 30–40 Mya. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 206–232.  相似文献   

10.
Ongoing modernization in India has elevated the prevalence of many complex genetic diseases associated with a western lifestyle and diet to near-epidemic proportions. However, although India comprises more than one sixth of the world's human population, it has largely been omitted from genomic surveys that provide the backdrop for association studies of genetic disease. Here, by genotyping India-born individuals sampled in the United States, we carry out an extensive study of Indian genetic variation. We analyze 1,200 genome-wide polymorphisms in 432 individuals from 15 Indian populations. We find that populations from India, and populations from South Asia more generally, constitute one of the major human subgroups with increased similarity of genetic ancestry. However, only a relatively small amount of genetic differentiation exists among the Indian populations. Although caution is warranted due to the fact that United States–sampled Indian populations do not represent a random sample from India, these results suggest that the frequencies of many genetic variants are distinctive in India compared to other parts of the world and that the effects of population heterogeneity on the production of false positives in association studies may be smaller in Indians (and particularly in Indian-Americans) than might be expected for such a geographically and linguistically diverse subset of the human population.  相似文献   

11.
12.
We investigated the extent of genetic differentiation among populations of fujihatazao,Arabis serrata along an altitudinal gradient at Mt. Fuji in Shizuoka Prefecture. This species is a perennial plant, widely distributed in Japan forming small isolated populations. However, at Mt. Fuji, this species constitutes a large population distributed from 1440 to 2400 m altitude. A total of 411 individuals were sampled from ten subpopulations. Eighteen loci were detected on eleven enzyme systems. Eleven loci were monomorphic and seven loci were polymorphic with a mean of 2.11 alleles per loci. Nei's genetic distance (mean 0.01) and genetic identity (mean 0.968) were very similar among populations indicating a low genetic differentiation. The total genetic diversity (H T ) estimated for the polymorphic loci was, in average, 0.396. The mean gene differentiation (GST=0.091) was very low. Gene frequency of seven polymorphic loci was analyzed by spatial autocorrelation methods based on Moran's indexes. Only Pgi-3 exhibited a significant negative autocorrelation (−0.160;P<0.05); other loci values ranged from −0.134 to 0.027. Gene flow estimated by indirect methods varied between genes but most of the values were high (meanNm=20.8) suggesting that subpopulations at different altitudes are probably connected. Despite plants at different altitudes present different ecological traits (e.g., differences in phenology, growth and reproductive traits), subpopulations ofA. serrata are still low differentiated, at least for the loci studied. This may be explained by the recent origin of some habitats (e.g., second crater and surrounded areas) in this locality.  相似文献   

13.
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex‐determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane''s rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. “Isolation with Migration” analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.  相似文献   

14.

Background and aims

Pseudometallophytes are model organisms for adaptation and population differentiation because they persist in contrasting edaphic conditions of metalliferous and non-metalliferous habitats. We examine patterns of genetic divergence and local adaptation of Biscutella laevigata to assess historical and evolutionary processes shaping its genetic structure.

Methods

We sampled all known populations of B. laevigata in Poland and analyzed respective soil metal concentrations. For genotyping we used nine nuclear microsatellite loci. Population genetic pools were identified (Bayesian clustering) and we estimated genetic parameters and demographic divergence between metallicolous and non-metallicolous populations (ABC-approach).

Results

Populations clustered into two groups which corresponded to their edaphic origin and diverged 1,200 generations ago. We detected a significant decrease in genetic diversity and evidence for a recent bottleneck in metallicolous populations. Genetic structure was unrelated to site distribution but is rather influenced by environmental conditions (i.e. soil metal concentration).

Conclusions

The intriguing disjunctive distribution of B. laevigata in Poland results from a fragmentation of the species range during the Holocene, rather than recent long-distance-dispersal events. The genetic structure of populations, however, continues to be modified by microevolutionary processes at anthropogenic sites. These clear divergence patterns promote B. laevigata as a model species for plant adaptation to polluted environments.  相似文献   

15.
运用10个RAPD引物对日本稻蝗(Oxya japonica)、中华稻蝗(Oxya chinensis)和赤胫伪稻蝗(Pseudoxya diminuta)的种群遗传分化进行分析。10个随机引物共产生135条带,扩增谱带具有明显的属、种间多态性。Shannon信息指数表明中华稻蝗遗传多样性水平较高(2.693),日本稻蝗次之(2.319),赤胫伪稻蝗最低(1.042)。中华稻蝗和日本稻蝗的不同地理居群出现遗传分化,由Shannon信息指数估算的种群间遗传分化系数分别为20.7%,42.4%。用UPGMA和NJ法对Nei’s遗传距离作聚类分析,构建分子系统树。系统树显示:同一种群的不同个体优先相聚,而后,同一种的不同种群依次相聚;日本稻蝗广西南宁种群和广东广州种群首先聚为一支,陕西西安种群和浙江杭州种群聚为另一支,两支相聚后与中华稻蝗聚在一起,最后与赤胫伪稻蝗相聚。聚类结果表明:不同地域日本稻蝗亲缘关系的远近与地理距离呈现一定的相关趋势,日本稻蝗与中华稻蝗亲缘关系较近,Nei’S遗传距离平均为0.142,而赤胫伪稻蝗与它们关系较远,Nei’s遗传距离平均为0.451。聚类图所显示的物种间亲缘关系的远近程度与形态分类学和细胞分类学结果相一致。  相似文献   

16.
Abstract.— We examined genetic variation at 21 polymorphic allozyme loci, 15 nuclear DNA loci, and mitochondrial DNA in four spawning populations of sockeye salmon ( Oncorhynchus nerka ) from Cook Inlet, Alaska, to test for differences in the patterns of divergence among different types of markers. We were specifically interested in testing the suggestion that natural selection at allozyme loci compromises the effectiveness of these markers for describing the amount and patterns of gene flow among populations. We found concordance among markers in the amount of genetic variation within and among populations, with the striking exception of one allozyme locus ( sAH ), which exhibited more than three times the amount of among-population differentiation as other loci. A consideration of reports of discordance between allozymes and other loci indicates that these differences usually result from one or two exceptional loci. We conclude that it is important to examine many loci when estimating genetic differentiation to infer historical amounts of gene flow and patterns of genetic exchange among populations. It is less important whether those loci are allozymes or nuclear DNA markers.  相似文献   

17.
Evolutionary biologists have long been interested in the processes influencing population differentiation, but separating the effects of neutral and adaptive evolution has been an obstacle for studies of population subdivision. A recently developed method allows tests of whether disruptive (ie, spatially variable) or stabilizing (ie, spatially uniform) selection is influencing phenotypic differentiation among subpopulations. This method, referred to as the F(ST) vs Q(ST) comparison, separates the total additive genetic variance into within- and among-population components and evaluates this level of differentiation against a neutral hypothesis. Thus, levels of neutral molecular (F(ST)) and quantitative genetic (Q(ST)) divergence are compared to evaluate the effects of selection and genetic drift on phenotypic differentiation. Although the utility of such comparisons appears great, its accuracy has not yet been evaluated in populations with known evolutionary histories. In this study, F(ST) vs Q(ST) comparisons were evaluated using laboratory populations of house mice with known evolutionary histories. In this model system, the F(ST) vs Q(ST) comparisons between the selection groups should reveal quantitative trait differentiation consistent with disruptive selection, while the F(ST) vs Q(ST) comparisons among lines within the selection groups should suggest quantitative trait differentiation in agreement with drift. We find that F(ST) vs Q(ST) comparisons generally produce the correct evolutionary inference at each level in the population hierarchy. Additionally, we demonstrate that when strong selection is applied between populations Q(ST) increases relative to Q(ST) among populations diverging by drift. Finally, we show that the statistical properties of Q(ST), a variance component ratio, need further investigation.  相似文献   

18.
Host-parasite interactions may select for significant novel mutations with major evolutionary consequences for both partners. In poor active dispersers such as ticks, their population structures are shaped by their host movements. Here, we use population genetics and phylogeography to investigate the evolutionary history of the most common tick in Europe, Ixodes ricinus, a vector of pathogenic agents causing diseases in humans and animals. Two mitochondrial and four nuclear genes were sequenced for 60 individuals collected on four geographical scales (local, regional, Eurasian and western Palearctic scales). The overall level of nucleotide diversity was low and the variability did not differ at the local, regional or Eurasian scales but increased two fold for the western Palearctic scale. Moreover, the phylogenetic trees indicated an absence of genetic structure among Eurasian ticks, contrasting with a strong differentiation of the north-African ticks which formed a divergent clade. The homogeneity in Eurasian ticks may be explained by gene flows due to passive dispersal of ticks by hosts within a continuous population and recent range expansion of I. ricinus as shown by the fit of the observed frequency distribution of numbers of mismatches between pairwise sequences with the demographic expansion model (Harpending raggedness index, P = 0.74). The genetic divergence of the north-African populations could be explained by genetic drift in these small populations that are geographically isolated and/or selection pressures due to different ecological conditions (seasonal activity, pathogenic agents and hosts communities). The consequences of these results on the epidemiology of vector-borne diseases are discussed.  相似文献   

19.
Allopatry and allopatric speciation can arise through two different mechanisms: vicariance or colonization through dispersal. Distinguishing between these different allopatric mechanisms is difficult and one of the major challenges in biogeographical research. Here, we address whether allopatric isolation in an endemic island lizard is the result of vicariance or dispersal. We estimated the amount and direction of gene flow during the divergence of isolated islet populations and subspecies of the endemic Skyros wall lizard Podarcis gaigeae, a phenotypically variable species that inhabits a major island and small islets in the Greek archipelago. We applied isolation-with-migration models to estimate population divergence times, population sizes and gene flow between islet-mainland population pairs. Divergence times were significantly correlated with independently estimated geological divergence times. This correlation strongly supports a vicariance scenario where islet populations have sequentially become isolated from the major island. We did not find evidence for significant gene flow within P. g. gaigeae. However, gene-flow estimates from the islet to the mainland populations were positively affected by islet area and negatively by distance between the islet and mainland. We also found evidence for gene flow from one subspecies (P. g. weigandi) into another (P. g. gaigeae), but not in the other direction. Ongoing gene flow between the subspecies suggests that even in this geographically allopatric scenario with the sea posing a strong barrier to dispersal, divergence with some gene flow is still feasible.  相似文献   

20.
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long-term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号