首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An efficient adaptor long-range PCR (ALR-PCR) procedure was developed to detect genomic rearrangements in high-plasticity genomic regions between closely related strains of bacteria. The method was precisely optimized using a combination of high-speed experimental steps for the chromosomal localization and elucidation of deletions, inversions, duplications, or inserted sequences within a clone-specific flanking region. The advantages of this strategy are: (i) ready-to-use polymerase mixtures and Master mix (ready-to-use reaction mixtures with polymerase MasterAmp and buffer 2x Premix 4); (ii) a 5-min ligation procedure; (iii) rapid purification of DNA digests; (iv) optimized DNA template concentration protocol to avoid nonspecific amplification and high backgrounds; (v) long-range PCR protocol to obtain at least 9.6 kb single PCR products; (vi) two-step PCR cycling with the same annealing and extension temperature at 68 degrees C; (vii) simple design of the adaptors according to the preferred restriction endonuclease enzyme; and (viii) simple technology and equipment required. The application of this method for a tester-specific suppressive subtractive hybridization (SSH) clone of Brucella melitensis 16M revealed an 837-bp deletion and a 7255-bp DNA transfer from one chromosomal location to another for Brucella abortus 2308 used as a driver.  相似文献   

2.
An improved method of adaptor ligation PCR was developed for isolation of unknown sequences flanking a known DNA sequence. It was determined that the specificity of the adaptor ligation-based walking technique could be significantly enhanced by using uniquely blocked adaptors along with removal of unligated genomic DNA by exonuclease III digestion. This technique was utilized to isolate three novel promoter regions from three differentZea mays(maize) peroxidase genes. Sequences encoding a putative maize 6-phosphogluconate dehydrogenase gene were also isolated and confirmed by sequence analysis. The described improvements could be applied to other existing adaptor ligation-based PCR walking techniques.  相似文献   

3.
The availability of a wider range of promoters for regulated expression in valuable transgenic crops would benefit functional genomics studies and current biotechnology programs aimed at improved productivity. Polymerase chain reaction (PCR)-based genome walking techniques are commonly used to isolate promoters or 5' flanking genomic regions adjacent to known cDNA sequences in genomes that are not yet completely sequenced. However, these techniques are problematic when applied directly to DNA isolated from crops with highly complex and large genomes. An adaptor ligation-mediated PCR-based BAC genome walking method is described here for the efficient isolation of promoters of multigene family members, such as the putative defense and fiber biosynthesis DIRIGENT genes that are abundant in the stem of sugarcane, a species with a highly polyploid genome. The advantage of this method is the efficient and specific amplification of the target promoter using BAC genomic DNA as template for the adaptor ligation-mediated PCR walking.  相似文献   

4.
This article describes the development of an improved method for the isolation of genomic fragments adjacent to a known DNA sequence based on a cassette ligation-mediated polymerase chain reaction (PCR) technique. To reduce the nonspecific amplification of PCR-based genome walking, the 3′ ends of the restriction enzyme-digested genomic DNA fragments were blocked with dideoxynucleoside triphosphate (ddNTP) and ligated with properly designed cassettes. The modified genomic DNA fragments flanked with cassettes were used as a template for the amplification of a target gene with a gene-specific primer (GSP) and a cassette primer (CP). The ddNTP blocking of the genomic DNA ends significantly reduced the nonspecific amplification and resulted in a simple and rapid walking along the genome. The efficiency of the template-blocking PCR method was confirmed by a carefully designed control experiment. The method was successfully applied for the cloning of the PGK1 promoter from Pichia ciferrii and two novel cellulase genes from Penicillium sp.  相似文献   

5.
This report describes a novel and efficient method for walking the sequence of a genomic deoxyribonucleic acid (DNA) from a known region to an unknown region based on an oligodeoxynucleotide (oligo) cassette-mediated polymerase chain reaction technique. In this method, genomic DNA is digested by a restriction enzyme that generates a sticky 5′-end, followed by ligation of a one-base excess oligo-adaptor using T4 DNA ligase. The adaptor consists of two complementary oligos that form the same sticky end as the digested genomic DNA fragments, except that the 5′-overhang base overlaps the corresponding 3′-end base of the restriction site. This overhanging terminal base prevents ligation between the adaptors, and the appropriate molar ratio of adaptor to genomic DNA enables specific amplification of the target sequence. T4 DNA ligase catalyzes both the ligation of the phosphorylated overhang base of the adaptor to genomic DNA and the excision of the corresponding 3′-terminal base of the genomic DNA. This sequence-specific exonuclease activity of T4 DNA ligase was confirmed by ligation of an alternative adaptor in which the 5′-terminal base was not consistent with the corresponding 3′-terminal base. Using this technique, the 3′- and 5′-flanking sequences of the catalase gene of the ciliate Paramecium bursaria were determined.  相似文献   

6.
The polymerase chain reaction (PCR)-based genome walking method has been extensively used to isolate unknown flanking sequences, whereas nonspecific products are always inevitable. To resolve these problems, we developed a new strategy to isolate the unknown flanking sequences by combining A-T linker adapter PCR with inverse PCR (I–PCR) or thermal asymmetric interlaced PCR (TAIL–PCR). The result showed that this method can be efficiently achieved with the flanking sequence from the Arabidopsis mutant and papain gene. Our study provides researchers with an additional method for determining genomic DNA flanking sequences to identify the target band from bulk of bands and to eliminate the cloning step for sequencing.  相似文献   

7.
Extraction of high-quality genomic DNA from latex-containing plants   总被引:8,自引:0,他引:8  
The isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including long PCR, endonuclease restriction digestion, Southern blot analysis, and genomic library construction. Many protocols are available for the extraction of DNA from plant material. However, for latex-containing Asteraceae (Cichorioideae) species, standard protocols and commercially available kits do not produce efficient yields of high-quality amplifiable DNA. A cetyltrimethylammonium bromide protocol has been optimized for isolation of genomic DNA from latex-containing plants. Key steps in the modified protocol are the use of etiolated leaf tissue for extraction and an overnight 25 degrees C isopropanol precipitation step. The purified DNA has excellent spectral qualities, is efficiently digested by restriction endonucleases, and is suitable for long-fragment PCR amplification.  相似文献   

8.
New bioactive proteins need to be screened from various microorganismsfor the increasing need for industrial and pharmaceutical peptide,proteins, or enzymes. A novel polymerase chain reaction (PCR)method, restriction site-dependent PCR (RSD-PCR), was designedfor rapid new genes cloning from genomic DNA. RSD-PCR strategyis based on these principles: (i) restriction sites dispersethroughout genomes are candidacy for universal pairing; (ii)a universal primer is a combination of a 3'-end of selectedrestriction sites, and a 5'-end of degenerated sequence. A two-roundPCR protocol was designed and optimized for the RSD-PCR: amplifythe single strand target template from genomic DNA by a specificprimer and amplify the target gene by using the specific primerand one of the universal RSD-primers. The optimized RSD-PCRwas successfully applied in chromosome walking using specificinternal primers, and cloning of new genes using degeneratedprimers derived from NH2-terminal amino acid sequence of protein.  相似文献   

9.
10.
Most genome projects have relied on the sequencing of bacterial artificial chromosomes (BACs), which encompass 100-300 kb of genomic DNA. As a consequence, several thousand BAC clones are now mapped to the human and mouse genome. It is therefore possible to identify in silico a BAC clone that carries a particular gene and obtain it commercially. Given the large size of BACs, most if not all regulatory sequences of a gene are present and can be used to direct faithful and tissue-specific expression of heterologous genes in vitro in cell cultures and in vivo in BAC-transgenic mice. We describe here an optimized and comprehensive protocol to select, modify, and purify BACs in order to generate BAC-transgenic mice. Importantly, this protocol includes a method to generate, within 2 days, complex plasmid cassettes required to modify BACs, and to efficiently modify different types of BACs selected from the two major BAC libraries available. Altogether, using a combination of genomic database analysis, overlap PCR cloning, and BAC recombination in bacteria, our approach allows for the rapid and reliable generation of "pseudo knockin" mice. genesis 38:39-50, 2004.  相似文献   

11.
Polymerase chain reaction (PCR)-based genome walking techniques are commonly used to clone unknown genomic regions flanking known sequences. However, these methods are typically problematic when applied to highly complex DNA templates isolated from plants with large genomes. Here we describe a reliable and efficient genome walking method that is particularly effective for plants with large genomes. Our ligation-mediated PCR method, Straight Walk, has improved sensitivity and specificity due to optimization of sequences of adaptors and adaptor primers. Successful genome walking in lily, which has one of the largest genomes in plants, indicates that Straight Walk is applicable for most plant species.  相似文献   

12.
一种改良的启动子序列克隆的染色体步查法   总被引:1,自引:0,他引:1  
利用染色体步行法,从已知DNA序列克隆侧翼未知序列是非常有效的方法之一,但由于所选用的特定限制性内切酶对目标基因组不能酶解成合适大小的片段,因而受PCR扩增能力的局限,往往扩增不出有效产物. 针对这一点,这里我们介绍一种简单有效的改良方法,它包括以下步骤:首先用不同的限制性内切酶(包括平末端和粘性末端) 酶解目标基因组DNA,接着,选择能将基因组酶切成弥散、分布均匀的限制性内切酶,如DraⅠ和HindⅢ,合成相对应的接头;然后,选择弥散的、分布均匀的限制性内切酶的酶解产物,构建成含相应接头的基因组DNA文库,用作PCR的模板;最后,用接头引物和特异引物,通过巢式PCR扩增目的片段,获得了理想的扩增效果.采用改进后的染色体步查法,有效地从较复杂的棉花核DNA中克隆出6个棉花启动子序列.  相似文献   

13.
以DEV基因组DNA为模板, 用简并PCR、改良Targeted gene walking PCR、改良的热不对称交错PCR和Long-PCR, 获得了5350 bp、11083 bp和2905 bp三段DEV未知基因片段, DNA序列分析发现包含9个开放阅读框, 将这些序列提交GenBank分别获得的登录号为: EF554396~EF554403。结果表明, 多种PCR方法联合使用可以高效的实现对鸭肠炎病毒未知基因的克隆。  相似文献   

14.
Y形接头延伸法(Y-shaped adaptor dependent extension,YADE)是一种扩增已知DNA片段相邻序列的方法,但其效率常受到已知序列周围酶切位点数目的限制。在Y形接头延伸中采用由多种酶切和连接产生的DNA作模板,大大提高了该方法扩增相邻序列的效率,实现了相邻序列的连续扩增。利用该方法通过2轮连续的扩增从7种酶切连接产物中成功地获得了1个棉花小GTP酶基因(GhRacB)的2228bp上游序列。结果表明,多模板Y形接头延伸法是一种从复杂基因组中扩增相邻序列的有用方法。  相似文献   

15.
Characterization of regions flanking a known sequence within a genome, known as genome walking, is a cornerstone technique in modern genetic analysis. In the present work we have developed a new PCR-dependent, directional genome walking protocol based on the unique circularization property of a novel DNA ligase, CircLigase. In the first step, PCR based primer extension is performed using a phosphorylated primer, designed to extend from the boundary of the known sequence, into the flanking region. This linear amplification results in the generation of single-stranded (ss) DNA, which is then circularized using CircLigase. Using the hyperbranching activity of Phi29 DNA polymerase, the circular ssDNA is then linearized by rolling circle amplification, resulting in copious amounts of double stranded concatameric DNA. Nested primers are used to amplify the flanking sequence using inverse PCR. The products are resolved on an agarose gel and the bands whose mobility change due to the nested location of the primer combination used are identified, extracted, and cloned into a plasmid vector for sequencing. Empirical proof for this concept was generated on two antimicrobial biosynthetic genes in Pseudomonas sp. LBUM300. Using the hcnB and phlD genes as starting points, ca 1 kb of flanking sequences were successfully isolated. The use of locus specific primers ensured both directionality and specificity of the walks, alleviating the generation of spurious amplicons, typically observed in randomly primed walking protocols. The presented genome walking protocol could be applied to any microbial genome and requires only 100-150 bp of prior sequence information. The proposed methodology does not entail laborious testing of restriction enzymes or adaptor ligation. This is the first report of a successful application of the novel ligase enzyme, CircLigase for genomic walking purposes.  相似文献   

16.
高GC含量DNA模板的PCR扩增   总被引:1,自引:0,他引:1  
目的:探索高GC含量DNA的PCR扩增条件,为扩增达托霉素生物合成基因簇及拼接奠定基础。方法:在PCR扩增体系中,使用高保真的聚合酶及添加不同浓度的DMSO、7-deaza-dGTP等增强剂,并选择合适的PCR循环程序,优化富含GC的DNA的PCR扩增条件。结果:向反应体系中额外添加1%~4%的DMSO可以显著提高富含GC的DNA的PCR扩增产物量,但会降低其特异性;7-deaza-dGTP可以提高扩增产物的特异性及保真度,但产量会有所下降。应用touch down PCR并在体系中添加7-deaza-dGTP能够提高扩增产物的特异性和产率,增加扩增的保真度。结论:应用优化的PCR扩增条件将所有达托霉素生物合成基因簇分段扩增出来,并可扩增出长达6 kb的片段,且序列完全正确,可以进行后续拼接。  相似文献   

17.
Objective: Reduction of non-specific amplification and achievement of efficient amplification of multiple gene fragments under the same reaction condition is the basic goal of PCR diagnosis; however, this is often difficult. This study was conducted to establish a highly specific and effective amplification of the epidermal growth factor receptor (EGFR) gene's exons, 18–21, simultaneously. Methods: The 5′-tailed primers were synthesized by adding 10 to 20 bp of a non-specific sequence to the 5′-terminus of sequence-specific primers (tailless primers). The two-stage protocol consisted of 5–10 cycles of a conventional 3-step cycling, which was then followed by 30–35 cycles of two-step cycling. The exons 18–21 of EGFR gene were amplified in 28 non-small cell lung cancer (NSCLC) patients using an optimized PCR that combined 5′ tailed primers with a two-stage protocol. Results: The 5′ tailed primers exhibited a wider range of suitable annealing temperatures, similar range of primer concentration, similar sensitivity, specificity, and reproducibility, as well as a reduced, non-specific amplification compared with the corresponding tailless primers. The amplification of exons 18–21 of EGFR gene in NSCLC patients revealed that a combination of 5′ tailed primers with two-stage protocol (optimized PCR) had a similar PCR success rate (P = 0.873) but had significantly reduced non-specific amplification (P <0.001) compared to conventional PCR. Conclusion: 5′ tailed primers exhibited a wider range of suitable annealing temperatures and improved specificity compared with conventional PCR primers. An optimized PCR was established with 5′ tailed primers and a two-stage protocol to amplify exons 18–21 of the EGFR gene in NSCLC patients.  相似文献   

18.
用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子   总被引:14,自引:0,他引:14  
 为克隆新的胡萝卜 型转化酶基因启动子 ,将胡萝卜基因组 DNA分别用 Pvu 、Eco R 、Dra 和 Sma 酶切 ,酶切片段与一特殊的衔接头连接 .取连接产物作模板 ,以衔接头引物和基因特异引物做 PCR,得到的主要 PCR产物分别为 3.4kb、1 .3kb、0 .4kb和 0 .6kb.将 Eco R -衔接头体系的 PCR产物克隆和测序 ,并将其序列与 Gen Bank中的已知序列进行比较分析 ,发现了一个新的胡萝卜 型转化酶启动子序列 ,它含有类似于 TATA box和 CAAT box的元件 ,在启动子的远上游区域还含有多个 AT富含区 .该启动子的发现对于研究植物中糖代谢具有重要意义 .  相似文献   

19.
With the development of the DNA barcoding project, a large number of specimens are required to establish the library of reference barcode. Formalin-fixed samples from museums provide a potential resource for it. However, recovery of DNA and amplification of the target gene from formalin-fixed samples are challenging. In this study, a hot alkali pre-treatment accompanied by the use of cetyltrimethylammonium bromide (CTAB) method was employed for DNA recovery from formalin-preserved samples, with the purpose of pursuing the optimal condition for high quantity and quality of DNA and minimizing PCR inhibition. Meanwhile, a semi-nested PCR-based method was developed to enhance the efficacy of amplification. This advanced protocol was demonstrated to be reliable and effective. Even for 23-year-old samples, genomic DNA could be extracted, and COI gene was correctly sequenced.  相似文献   

20.
This study compares two PCR assays for the detection of Anaplasma platys in dog blood using primers based on the A. platys 16S rRNA gene. The first approach utilized a "standard" PCR protocol composed of a "single-step" direct amplification using an Ehrlichia genus-specific primer set. The second assay being a "nested" PCR screen that first involved a universal bacterial primer set that amplified the majority of the 16S rRNA gene, followed by the nested round of PCR using an A. platys-specific primer set. Of the 22 dogs sampled, 10 were found to contain A. platys DNA using both protocols, and an additional two dogs were found positive using the nested technique. An extract of A. platys positive genomic DNA was serially diluted and comparison of sensitivities determined between the nested PCR, and a direct assay using A. platys-specific primers. The nested protocol demonstrated an increased sensitivity by at least 2 orders of magnitude when compared to the direct assay alone. Our results indicated that the nested PCR assay with its increased sensitivity would be useful for experimental research investigations as well as offer the potential for use as a routine test in diagnostic pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号