共查询到20条相似文献,搜索用时 0 毫秒
1.
Ji Young Kim Jihee Kim Yuri Ahn Eun Jung Lee Shinwon Hwang Abdurrahman Almurayshid Keedon Park Hwa‐Jee Chung Heung Jae Kim Si‐Hyung Lee Myung‐Shik Lee Sang Ho Oh 《Pigment cell & melanoma research》2020,33(3):403-415
Autophagy regulates cellular turnover by disassembling unnecessary or dysfunctional constituents. Recent studies demonstrated that autophagy and its regulators play a wide variety of roles in melanocyte biology. Activation of autophagy is known to induce melanogenesis and regulate melanosome biogenesis in melanocytes. Also, autophagy induction was reported to regulate physiologic skin color via melanosome degradation, although the downstream effectors are not yet clarified. To determine the role of autophagy as a melanosome degradation machinery, we administered several autophagy inducers in human keratinocytes and melanocytes. Our results showed that the synthetic autophagy inducer PTPD‐12 stimulated autophagic flux in human melanocytes and in keratinocytes containing transferred melanosomes. Increased autophagic flux led to melanosome degradation without affecting the expression of MITF. Furthermore, the color of cell pellets of both melanocytes and keratinocytes was visibly lightened. Inhibition of autophagic flux by chloroquine resulted in marked attenuation of PTPD‐12‐induced melanosome degradation, whereas the expression of melanogenesis pathway genes and proteins remained unaffected. Taken together, our results suggest that the modulation of autophagy can contribute to the regulation of melanocyte biology and skin pigmentation. 相似文献
2.
Tetsuro Horie Hiroshi Tsugawa Yasumune Nakayama Yoshinori Ohsumi Eiichiro Fukusaki 《The EMBO journal》2015,34(2):154-168
Autophagy is a catabolic process conserved among eukaryotes. Under nutrient starvation, a portion of the cytoplasm is non‐selectively sequestered into autophagosomes. Consequently, ribosomes are delivered to the vacuole/lysosome for destruction, but the precise mechanism of autophagic RNA degradation and its physiological implications for cellular metabolism remain unknown. We characterized autophagy‐dependent RNA catabolism using a combination of metabolome and molecular biological analyses in yeast. RNA delivered to the vacuole was processed by Rny1, a T2‐type ribonuclease, generating 3′‐NMPs that were immediately converted to nucleosides by the vacuolar non‐specific phosphatase Pho8. In the cytoplasm, these nucleosides were broken down by the nucleosidases Pnp1 and Urh1. Most of the resultant bases were not re‐assimilated, but excreted from the cell. Bulk non‐selective autophagy causes drastic perturbation of metabolism, which must be minimized to maintain intracellular homeostasis. 相似文献
3.
4.
Lin CB Chen N Scarpa R Guan F Babiarz-Magee L Liebel F Li WH Kizoulis M Shapiro S Seiberg M 《Pigment cell & melanoma research》2008,21(2):172-183
The protease-activated receptor-2 (PAR-2) is a seven transmembrane G-protein-coupled receptor that could be activated by serine protease cleavage or by synthetic peptide agonists. We showed earlier that activation of PAR-2 with Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLIGRL), a known PAR-2 activating peptide, induces keratinocyte phagocytosis and increases skin pigmentation, indicating that PAR-2 regulates pigmentation by controlling phagocytosis of melanosomes. Here, we show that Leu-Ile-Gly-Arg-NH(2) (LIGR) can also induce skin pigmentation. Both SLIGRL and LIGR increased melanin deposition in vitro and in vivo, and visibly darkened human skins grafted onto severe combined immuno-deficient (SCID) mice. Both SLIGRL and LIGR stimulated Rho-GTP activation resulting in keratinocyte phagocytosis. Interestingly, LIGR activates only a subset of the PAR-2 signaling pathways, and unlike SLIGRL, it does not induce inflammatory processes. LIGR did not affect many PAR-2 signaling pathways, including [Ca(2+)] mobilization, cAMP induction, the induction of cyclooxgenase-2 (COX-2) expression and the secretion of prostaglandin E2, interleukin-6 and -8. PAR-2 siRNA inhibited LIGR-induced phagocytosis, indicating that LIGR signals via PAR-2. Our data suggest that LIGR is a more specific regulator of PAR-2-induced pigmentation relative to SLIGRL. Therefore, enhancing skin pigmentation by topical applications of LIGR may result in a desired tanned-like skin color, without enhancing inflammatory processes, and without the need of UV exposure. 相似文献
5.
Yusuke Takahara Nobuyuki Miyachi Mikiro Nawa Masaaki Matsuoka 《Cell biology international》2019,43(7):835-843
Calmodulin‐like skin protein (CLSP) is a secreted peptide that is produced by skin keratinocytes and some related epithelial cells. It has previously been shown that CLSP is recruited via the bloodstream into the central nervous system where it likely exerts a neuroprotective effect against toxicity related to Alzheimer's disease (AD) by binding to the heterotrimeric humanin receptor and activating intracellular survival signaling. However, it remains to be elucidated whether secreted CLSP shows a protective effect in the skin tissues. In the current study, using primary keratinocytes treated with hydrogen peroxide (H2O2) or exposed to ultraviolet (UV) irradiation as senescence models of keratinocytes, we addressed whether CLSP affects senescence in skin keratinocytes. We found that CLSP expression was upregulated by H2O2 or UV in keratinocytes. Furthermore, co‐incubation with recombinant CLSP reduced the increase in senescence‐associated β‐galactosidase‐positivity in keratinocytes that were induced by H2O2 or UV. These results suggest that CLSP may function as a senescence‐suppressing factor in keratinocytes. 相似文献
6.
Qiulu Yuan Haotian Chen Yuxin Yang Yurong Fu Zhengjun Yi 《Journal of cellular and molecular medicine》2020,24(2):2004-2012
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of leading causes of global deaths. This study aimed to explore the role of miR‐18a in RAW264.7 cells response to Mtb infection. Exosomes derived from Mtb‐infected cells were isolated and further validated by size, transmission electron microscopy and Western blot. RT‐PCR was utilized to measure miR‐18a expression. Cell viability and ultrastructure were examined by CFU counting, CCK‐8 and electron microscope, respectively. Potential target genes of miR‐18a were predicted with bioinformatics and further confirmed using RT‐PCR, Western blot and laser confocal microscope analysis, respectively. LC3, AMPK and mTOR were measured using Western blot. We found that miR‐18a was induced both in Mtb‐infected RAW264.7 cells and its derived exosomes compared with the controls. In addition, up‐regulation of miR‐18a promoted intracellular Mtb survival, attenuated cell viability and reduced LC3‐II level, while its down‐regulation had the opposite effect. miR‐18a overexpression suppressed level of ATM, one possible target of miR‐18a, while its underexpression enhanced ATM. We also found that inhibition of ATM induced LC3‐II decrease in Mtb‐infected cells and could reverse the increase of LC3‐II caused by inhibition of miR‐18a. Moreover, down‐regulation of miR‐18a increased p‐AMPK level while reduction of ATM could reverse the change. Taken together, our results suggest that miR‐18a is up‐regulated in macrophages response to Mtb infection, and it promotes intracellular Mtb survival through repressing autophagic process by down‐regulation of ATM pathway. This provides new thought for TB pathogenesis, diagnosis and treatment. 相似文献
7.
8.
Manfei Deng Qingping Zhang Zhuoze Wu Tian Ma Aodi He Tongmei Zhang Xiao Ke Quntao Yu Yunyun Han Youming Lu 《Aging cell》2020,19(5)
Recently, we have reported that dentate mossy cells (MCs) control memory precision via directly and functionally innervating local somatostatin (SST) inhibitory interneurons. Here, we report a discovery that dysfunction of synaptic transmission between MCs and SST cells causes memory imprecision in a mouse model of early Alzheimer's disease (AD). Single‐cell RNA sequencing reveals that miR‐128 that binds to a 3′UTR of STIM2 and inhibits STIM2 translation is increasingly expressed in MCs from AD mice. Silencing miR‐128 or disrupting miR‐128 binding to STIM2 evokes STIM2 expression, restores synaptic function, and rescues memory imprecision in AD mice. Comparable findings are achieved by directly engineering MCs with the expression of STIM2. This study unveils a key synaptic and molecular mechanism that dictates how memory maintains or losses its details and warrants a promising target for therapeutic intervention of memory decays in the early stage of AD. 相似文献
9.
10.
Phenyl 2‐pyridyl ketoxime induces cellular senescence‐like alterations via nitric oxide production in human diploid fibroblasts 下载免费PDF全文
Kyeong Eun Yang Hyun‐Jin Jang In‐Hu Hwang Young‐Ho Chung Jong‐Soon Choi Tae‐Hoon Lee Yun‐Jo Chung Min‐Seung Lee Mi Young Lee Eui‐Ju Yeo Ik‐Soon Jang 《Aging cell》2016,15(2):245-255
Phenyl‐2‐pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near‐senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose‐ and time‐dependent manner and resulted in senescence‐associated β‐galactosidase (SA‐β‐gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence‐associated proteins, such as phosphorylated ERK1/2, caveolin‐1, p53, p16ink4a, and p21waf1, were elevated in PPKO‐treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N‐acetylcysteine, 2,2,6,6‐tetramethylpiperidinyloxy, and L‐buthionine‐(S,R)‐sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L‐NG‐nitroarginine methyl ester and L‐NG‐monomethylarginine, PPKO‐induced transient NO production and SA‐β‐gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence‐associated proteins . 相似文献
11.
Jae Seong Lee Tae Kwang Ha Jin Hyoung Park Gyun Min Lee 《Biotechnology and bioengineering》2013,110(8):2195-2207
Genetic engineering approaches to inhibit cell death in Chinese hamster ovary (CHO) cell cultures have been limited primarily to anti‐apoptosis engineering. Recently, autophagy has received attention as a new anti‐cell death engineering target in addition to apoptosis. In order to achieve a more efficient protection of cells from the stressful culture conditions, the simultaneous targeting of anti‐apoptosis and pro‐autophagy in CHO cells (DG44) was attempted by co‐overexpressing an anti‐apoptotic protein, Bcl‐2, and a key regulator of autophagy pathway, Beclin‐1, respectively. Co‐overexpression of Bcl‐2 and Beclin‐1 exhibited a longer culture period as well as higher viability during serum‐free suspension culture, compared with the control (without co‐overexpression of Bcl‐2 and Beclin‐1) and Bcl‐2 overexpression only. In addition to the efficient inhibition of apoptosis by Bcl‐2 overexpression, Beclin‐1 overexpression successfully induced the increase in the autophagic marker protein, LC3‐II, and autophagosome formation with the decrease in mTOR activity. Co‐immunoprecipitation and qRT‐PCR experiments revealed that the enforced expression of Beclin‐1 increased Ulk1 expression and level of free‐Beclin‐1 that did not bind to the Bcl‐2 despite the Bcl‐2 overexpression. Under other stressful culture conditions such as treatment with sodium butyrate and hyperosmolality, co‐overexpression of Bcl‐2 and Beclin‐1 also protected the cells from cell death more efficiently than Bcl‐2 overexpression only, implying the potential of autophagy induction. Taken together, the data obtained here provide the evidence that pro‐autophagy engineering together with anti‐apoptosis engineering yields a synergistic effect and successfully enhances the anti‐cell death engineering of CHO cells. Biotechnol. Bioeng. 2013; 110: 2195–2207. © 2013 Wiley Periodicals, Inc. 相似文献
12.
S‐Adenosylmethionine‐mediated apoptosis is potentiated by autophagy inhibition induced by chloroquine in human breast cancer cells 下载免费PDF全文
Donatella Delle Cave Vincenzo Desiderio Laura Mosca Concetta P. Ilisso Luigi Mele Michele Caraglia Giovanna Cacciapuoti Marina Porcelli 《Journal of cellular physiology》2018,233(2):1370-1383
13.
miR‐370 and miR‐373 regulate the pathogenesis of osteoarthritis by modulating one‐carbon metabolism via SHMT‐2 and MECP‐2, respectively 下载免费PDF全文
The aim of this study was to determine the mechanism underlying the association between one‐carbon metabolism and DNA methylation during chronic degenerative joint disorder, osteoarthritis (OA). Articular chondrocytes were isolated from human OA cartilage and normal cartilage biopsied, and the degree of cartilage degradation was determined by safranin O staining. We found that the expression levels of SHMT‐2 and MECP‐2 were increased in OA chondrocytes, and 3′UTR reporter assays showed that SHMT‐2 and MECP‐2 are the direct targets of miR‐370 and miR‐373, respectively, in human articular chondrocytes. Our experiments showed that miR‐370 and miR‐373 levels were significantly lower in OA chondrocytes compared to normal chondrocytes. Overexpression of miR‐370 or miR‐373, or knockdown of SHMT‐2 or MECP‐2 reduced both MMP‐13 expression and apoptotic cell death in cultured OA chondrocytes. In vivo, we found that introduction of miR‐370 or miR‐373 into the cartilage of mice that had undergone destabilization of the medial meniscus (DMM) surgery significantly reduced the cartilage destruction in this model, whereas introduction of SHMT‐2 or MECP‐2 increased the severity of cartilage destruction. Together, these results show that miR‐370 and miR‐373 contribute to the pathogenesis of OA and act as negative regulators of SHMT‐2 and MECP‐2, respectively. 相似文献
14.
SB‐216763, a GSK‐3β inhibitor,protects against aldosterone‐induced cardiac,and renal injury by activating autophagy 下载免费PDF全文
Yi‐De Zhang Xiao‐Jun Ding Hou‐Yong Dai Wei‐Sheng Peng Nai‐Feng Guo Yuan Zhang Qiao‐Ling Zhou Xiao‐Lan Chen 《Journal of cellular biochemistry》2018,119(7):5934-5943
Cardiovascular and renal inflammation induced by Aldosterone (Aldo) plays a pivotal role in the pathogenesis of hypertension and renal fibrosis. GSK‐3β contributes to inflammatory cardiovascular and renal diseases, but its role in Aldo‐induced hypertension, and renal damage is not clear. In the present study, rats were treated with Aldo combined with SB‐216763 (a GSK‐3β inhibitor) for 4 weeks. Hemodynamic, cardiac, and renal parameters were assayed at the indicated time. Here we found that rats treated with Aldo presented cardiac and renal hypertrophy and dysfunction. Cardiac and renal expression levels of molecular markers attesting inflammation and fibrosis were increased by Aldo infusion, whereas the treatment of SB‐216763 reversed these alterations. SB‐216763 suppressed cardiac and renal inflammatory cytokines levels (TNF‐a, IL‐1β, and MCP‐1). Meanwhile, SB‐216763 increased the protein levels of LC3‐II in the cardiorenal tissues as well as p62 degradation, indicating that SB‐216763 induced autophagy activation in cardiac, and renal tissues. Importantly, inhibition of autophagy by 3‐MA attenuated the role of SB‐216763 in inhibiting perivascular fibrosis, and tubulointerstitial injury. These data suggest that SB‐216763 protected against Aldo‐induced cardiac and renal injury by activating autophagy, and might be a therapeutic option for salt‐sensitive hypertension and renal fibrosis. 相似文献
15.
16.
Evaluation of tubulin β‐3 as a novel senescence‐associated gene in melanocytic malignant transformation 下载免费PDF全文
Kyriakos Orfanidis Petra Wäster Katarzyna Lundmark Inger Rosdahl Karin Öllinger 《Pigment cell & melanoma research》2017,30(2):243-254
Malignant melanoma might develop from melanocytic nevi in which the growth‐arrested state has been broken. We analyzed the gene expression of young and senescent human melanocytes in culture and compared the gene expression data with a dataset from nevi and melanomas. A concordant altered gene expression was identified in 84 genes when comparing the growth‐arrested samples with proliferating samples. TUBB3, which encodes the microtubule protein tubulin β‐3, showed a decreased expression in senescent melanocytes and nevi and was selected for further studies. Depletion of tubulin β‐3 caused accumulation of cells in the G2/M phase and decreased proliferation and migration. Immunohistochemical assessment of tubulin β‐3 in benign lesions revealed strong staining in the superficial part of the intradermal components, which faded with depth. In contrast, primary melanomas exhibited staining without gradient in a disordered pattern and strong staining of the invasive front. Our results describe an approach to find clinically useful diagnostic biomarkers to more precisely identify cutaneous malignant melanoma and present tubulin β‐3 as a candidate marker. 相似文献
17.
18.
Icariside II,a novel phosphodiesterase 5 inhibitor,protects against H2O2‐induced PC12 cells death by inhibiting mitochondria‐mediated autophagy 下载免费PDF全文
Jianmei Gao Yuanyuan Deng Caixia Yin Yuangui Liu Wei Zhang Jingshan Shi Qihai Gong 《Journal of cellular and molecular medicine》2017,21(2):375-386
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways. 相似文献
19.
Sulforaphane enhances temozolomide‐induced apoptosis because of down‐regulation of miR‐21 via Wnt/β‐catenin signaling in glioblastoma 下载免费PDF全文
Temozolomide (TMZ) has been widely used in the treatment of glioblastoma (GBM), although inherent or acquired resistance restricts the application. This study was aimed to evaluate the efficacy of sulforaphane (SFN) to TMZ‐induced apoptosis in GBM cells and the potential mechanism. Biochemical assays and subcutaneous tumor establishment were used to characterize the function of SFN in TMZ‐induced apoptosis. Our results revealed that β‐catenin and miR‐21 were concordantly expressed in GBM cell lines, and SFN significantly reduced miR‐21 expression through inhibiting the Wnt/β‐catenin/TCF4 pathway. Furthermore, down‐regulation of miR‐21 enhanced the pro‐apoptotic efficacy of TMZ in GBM cells. Finally, we observed that SFN strengthened TMZ‐mediated apoptosis in a miR‐21‐dependent manner. In conclusion, SFN effectively enhances TMZ‐induced apoptosis by inhibiting miR‐21 via Wnt/β‐catenin signaling in GBM cells. These findings support the use of SFN for potential therapeutic approach to overcome TMZ resistance in GBM treatment.
20.
Ran Xue Xuemin Zhu Lin Jia Jing Wu Jing Yang Yueke Zhu Qinghua Meng 《Journal of cellular and molecular medicine》2019,23(11):7810-7818
Acute‐on‐chronic liver failure (ACLF) is a life‐threatening syndrome with poor prognosis. Several studies have begun to prove that mitochondria play a crucial role in liver failure. Mitofusin2 (Mfn2) plays a key role in maintaining the integrity of mitochondrial morphology and function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of ACLF remain unclear. Our aim was to explore the effect of Mfn2 on several biological functions involving cell autophagy in ACLF. In this study, we constructed an ACLF animal model and a hepatocyte autophagy model, using adenovirus and lentivirus to deliver Mfn2 to liver cells, in order to assess the effect of Mfn2 on autophagy and apoptosis in ACLF. Furthermore, we explored the biological mechanism of Mfn2‐induced autophagy of ACLF using Western blotting, RT‐PCR and electron microscopy. We found that Mfn2 significantly attenuated ACLF, characterized by ameliorated gross appearance and microscopic histopathology of liver, and reduced serum AST, ALT, and TBIL levels. Mfn2 improved the expressions of LC3‐II, Atg5 and Bcl‐2 and down‐regulated the expression of P62 and Bax in ACLF. Like rapamycin, Mfn2 also significantly inhibited the expressions of p‐PI3K, p‐Akt and p‐mTOR in ACLF. In conclusion, our findings suggest that Mfn2 influences multiple biological functions of ACLF via the PI3K/Akt/mTOR signalling pathway. This study will provide a reliable theoretical basis for the application of Mfn2 as an effective target for ACLF treatment, reversing or delaying the process of ACLF. 相似文献