首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本研究通过分析开花期灌水对小麦产量、植株养分分配和土壤养分分布的影响及其与根系特性的关系,为小麦充分利用水肥资源提供理论支撑。以抗旱高产品种‘洛麦28'和高光效品种‘百农207'为材料,采用2 m深土柱栽培方法,设置开花期灌水(T1)和开花期不灌水(T2)两个水分处理,测定了不同组织器官、不同土层土壤氮、磷、钾含量及根系分布特性等指标。结果表明: 小麦收获期土壤中铵态氮、速效磷和速效钾主要分布在0~80 cm土层中,硝态氮主要分布在80 cm以下土层中,开花期灌水促进小麦吸收0~60 cm土层的铵态氮、速效磷、速效钾和80 cm以下土层的硝态氮,减少了硝态氮向深层土壤的淋溶;小麦根系主要集中在0~60 cm土层中,随土壤深度的增加而减少。成熟期干物质积累量、全氮和全磷主要分配在小麦籽粒中,而全钾主要分配在茎秆中;开花期灌水显著增加了小麦百粒重,提高了小麦产量;根系形态指标与土壤硝态氮在0~40 cm土层中呈显著负相关,与土壤铵态氮在80~100 cm土层中呈极显著正相关,与土壤速效磷在0~100 cm土层中呈显著正相关。开花期灌水促进了根系在小麦生育末期对土壤养分的充分吸收,延长了养分从营养器官向生殖器官的转运功能期,使营养器官中的养分充分地转运到籽粒中去,增加小麦粒重,进而提高产量。  相似文献   

2.
Plant root development is strongly affected by nutrient availability. Despite the importance of structure and function of roots in nutrient acquisition,statistical modeling approaches to evaluate dynamic and temporal modulations of root system architecture in response to nutrient availability have remained as widely open and exploratory areas in root biology. In this study,we developed a statistical modeling approach to investigate modulations of root system architecture in response to nitrogen availability. Mathematical models were designed for quantitative assessment of root growth and root branching phenotypes and their dynamic relationships based on hierarchical con figuration of primary and lateral roots formulating the fishbone-shaped root system architecture in Arabidopsis thaliana. Time-series datasets reporting dynamic changes in root developmental traits on different nitrate or ammonium concentrations were generated for statistical analyses. Regression analyses unraveled key parameters associated with:(i) inhibition of primary root growth under nitrogen limitation or on ammonium;(ii) rapid progression of lateral root emergence in response to ammonium; and(iii) inhibition of lateral root elongation in the presence of excess nitrate or ammonium. This study provides a statistical framework for interpreting dynamic modulation of root system architecture,supported by metaanalysis of datasets displaying morphological responses of roots to diverse nitrogen supplies.  相似文献   

3.
Plant roots under nitrogen deficient conditions with access to both ammonium and nitrate ions, will take up ammonium first. This preference for ammonium rather than nitrate emphasizes the importance of ammonium assimilation machinery in roots. Glutamine synthetase (GS) and glutamate synthase (GOGAT) catalyze the conversion of ammonium and 2‐oxoglutarate to glutamine and glutamate. Higher plants have two GOGAT species, ferredoxin‐dependent glutamate synthase (Fd‐GOGAT) and nicotinamide adenine dinucleotide (NADH)‐GOGAT. While Fd‐GOGAT participates in the assimilation of ammonium, which is derived from photorespiration in leaves, NADH‐GOGAT is highly expressed in roots and its importance needs to be elucidated. While ammonium as a minor nitrogen form in most soils is directly taken up, nitrate as the major nitrogen source needs to be converted to ammonium prior to uptake. The aim of this study was to investigate and quantify the contribution of NADH‐GOGAT to the ammonium assimilation in Arabidopsis (Arabidopsis thaliana Columbia) roots. Quantitative real‐time polymerase chain reaction (PCR) and protein gel blot analysis showed an accumulation of NADH‐GOGAT in response to ammonium supplied to the roots. In addition the localization of NADH‐GOGAT and Fd‐GOGAT did not fully overlap. Promoter–β‐glucuronidase (GUS) fusion analysis and immunohistochemistry showed that NADH‐GOGAT was highly accumulated in non‐green tissue like vascular bundles, shoot apical meristem, pollen, stigma and roots. Reverse genetic approaches suggested a reduction in glutamate production and biomass accumulation in NADH‐GOGAT transfer DNA (T‐DNA) insertion lines under normal CO2 condition. The data emphasize the importance of NADH‐GOGAT in the ammonium assimilation in Arabidopsis roots.  相似文献   

4.
5.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

6.
In ecosystems limited by soil nutrients, some plants show a restricted horizontal distribution of their roots. We explored the hypothesis that this particular pattern is a foraging strategy emerging from tradeoffs between soil exploration (that increases the pool of nutrients available for plants) and the local control of nutrient cycling within the soil that we call soil occupation. We developed two general analytical models of the cycling of a limiting nutrient in a plant population that is not limited by water. They allowed to explore how plant productivity is affected when roots do not exploit the whole soil available and to determine the conditions for which plant nutrient stock is maximized when plants limit their exploration of soil. We predict that a restricted exploration strategy can be beneficial when 1) there is at least one tradeoff between a nutrient cycling parameter and soil exploration, 2) nutrient availability in the unexplored soil is poor and 3) the area of soil explored by plants is stable over time. The exploration limitation strategy results in spatially heterogeneous and nutrient‐conservative ecosystems. Our results should apply well to perennial tussock grasses within tropical nutrient‐limited ecosystems and raises interesting cues for the construction of more sustainable agro‐ecosystems. Overall, our study underlines the importance of considering the multiplicity of root–soil interactions and of their scales when considering root foraging strategies.  相似文献   

7.
Diurnal courses of nutrient transport in the xylem and their response to external availability of nutrients were studied. In soil culture, maximal concentrations in all analysed substances were observed during night‐time. Over experimental periods of up to 20 d, concentrations of some ions increased, most by accumulation in the soil. Stringent nutrient conditions were established in a novel pressure chamber. An aeroponic nutrient delivery system inside allows the sampling of xylem sap from intact plants under full control of the nutrient conditions at the root. Analysis of xylem transport under these highly defined conditions established that (1) diurnal variations in concentrations and fluxes in the xylem are dominated by plant‐internal processes; (2) concentrations of nutrients in the xylem sap are highly but specifically correlated with each other; (3) nitrate uptake and nitrate flux to the shoot are largely uncoupled; and (4) in continuous light, diurnal variations of xylem sap concentrations vanish. Step changes in nitrate concentrations of the nutrient solution established that (5) the concomitant increase in nitrate concentration and flux in the xylem is delayed by 2–3 h and is only transient. Diurnal variations of xylem sap composition and use of the new technique to elucidate xylem‐transport mechanisms are discussed.  相似文献   

8.
9.
In mixed tree‐grass ecosystems, tree recruitment is limited by demographic bottlenecks to seedling establishment arising from inter‐ and intra‐life‐form competition, and disturbances such as fire. Enhanced nutrient availability resulting from anthropogenic nitrogen (N) and phosphorus (P) deposition can alter the nature of these bottlenecks by changing seedling growth and biomass allocation patterns, and lead to longer‐term shifts in tree community composition if different plant functional groups respond differently to increased nutrient availability. However, the extent to which tree functional types characteristic of savannas differ in their responses to increased N and P availability remains unclear. We quantified differences in above‐ and belowground biomass, and root carbohydrate contents in seedlings of multiple N‐fixing and non‐N‐fixing tree species characteristic of Indian savanna and dry forest ecosystems in response to experimental N and P additions. These parameters are known to influence the ability of plants to compete, as well as survive and recover from fires. N‐fixers in our study were co‐limited by N and P availability, while non‐N‐fixers were N limited. Although both functional groups increased biomass production following fertilization, non‐N‐fixers were more responsive and showed greater relative increases in biomass with fertilization than N‐fixers. N‐fixers had greater baseline investment in belowground resources and root carbohydrate stocks, and while fertilization reduced root:shoot ratios in both functional groups, root carbohydrate content only reduced with fertilization in non‐N‐fixers. Our results indicate that, even within a given system, plants belonging to different functional groups can be limited by, and respond differentially to, different nutrients, suggesting that long‐term consequences of nutrient deposition are likely to vary across savannas contingent on the relative amounts of N and P being deposited in sites.  相似文献   

10.
11.
A predator‐proof fence was built at Kaena Point Natural Area Reserve, Hawaii in 2010 as part of an ecosystem restoration project. All non‐native mammalian predators were removed and are now excluded. Non‐native plants are being removed and native species are being outplanted. We monitored abundance and reproduction of Puffinus pacificus (wedge‐tailed shearwaters), collected soil samples before and after fence construction, and examined the relationship between changes in shearwater numbers and soil nutrients. Shearwater numbers increased over time, from 11 young produced in 1994 to 3,274 in 2012. The average number of shearwaters produced during the 3 years before and after fence construction increased from 614 ± 249 to 2,359 ± 802 (384% increase). The average number of shearwater pairs attempting to nest also increased during the same periods, from 3,265 ± 827 to 4,726 ± 826 (45% increase). Soil samples from 2010 to 2013 showed an overall decline in concentration of ammonium (NH4+) and no change in concentration of nitrate (NO3?) or orthophosphate (PO43?). However, there was a positive relationship between changes in shearwater numbers and changes in ammonium. Examination of spatial patterns in nutrient abundance showed that the highest nutrient concentrations occurred in areas dominated by the non‐native nitrogen‐fixing plants Leucaena leucocephala and Prosopis pallida. Removal of these plants caused local nutrient declines, but increases in shearwater numbers have countered this at some points. We anticipate that shearwaters and other seabirds will replace non‐native plants as the dominant source of nitrogen and phosphorous and facilitate recovery of a native‐dominated plant assemblage.  相似文献   

12.
The growth rate and water content of urea-fed seedlings of Pinus silvestris L. were compared with those of nitrate-and ammonium-fed seedlings grown in continuously renewed nutrient solutions, in which the hydrolysis of urea to ammonia and carbon dioxide was minimized. The growth rate of seedlings grown in an ammonium nutrient solution, in an urea nutrient solution and in a nitrate nutrient solution was about 90 per cent, 75 per cent and 60 per cent, respectively, of that of seedlings grown in a mixture of ammonium and nitrate. Seedlings with urea as the sole nitrogen source developed very severe chlorosis of the needles, the old roots were dark-coloured, the whole root system was very fragile, and the lateral roots of the third order were missing. Urea-grown seedlings had the highest nitrogen contents, closely followed by the ammonium and the ammonium + nitrate seedlings. The lowest nitrogen level was in nitrate seedlings. The low growth rate and the chlorosis of urea-fed seedlings were suggested to be the result of a hydrolysis of urea inside the root, causing an increase in pH and an accumulation of ammonia in the root.  相似文献   

13.
Functional traits of leaves and fine root vary broadly among different species, but little is known about how these interspecific variations are coordinated between the two organs. This study aims to determine the interspecific relationships between corresponding leaf and fine‐root traits to better understand plant strategies of resource acquisition. SLA (Specific leaf area), SRL (specific root length), mass‐based N (nitrogen) and P (phosphorus) concentrations of leaves and fine roots, root system, and plant sizes were measured in 23 woody species grown together in a common garden setting. SLA and SRL exhibited a strong negative relationship. There were no significant relationships between corresponding leaf and fine‐root nutrient concentrations. The interspecific variations in plant height and biomass were tightly correlated with root system size characteristics, including root depth and total root length. These results demonstrate a coordinated plant size‐dependent variation between shoots and roots, but for efficiency, plant resource acquisition appears to be uncoupled between the leaves and fine roots. The different patterns of leaf and fine‐root traits suggest different strategies for resource acquisition between the two organs. This provides insights into the linkage between above‐ and belowground subsystems in carbon and nutrient economy.  相似文献   

14.
Changes in function as an individual root ages has important implications for understanding resource acquisition, competitive ability and optimal lifespan. Both nitrate uptake and respiration rates of differently aged fine roots of grape (Vitis rupestris x V. riparia cv. 3309 C) were measured. The resulting data were then used to simulate nitrate uptake efficiency and nutrient depletion as a function of root age. Both nitrate uptake and root respiration declined remarkably quickly with increasing root age. The decline in both N uptake and root respiration corresponded with a strong decline in root N concentration, suggesting translocation of nitrogen out of the roots. For simulations where no nutrient depletion occurs at the root surface, daily uptake efficiency was maximal at root birth and lifetime nitrate uptake efficiency slowly increased as the roots aged. Simulations of growth of roots into unoccupied soil using a solute transport model indicated the advantage of high uptake capacity in new roots under competitive conditions where nitrate availability is very transitory.  相似文献   

15.
Approximately 35–55% of total nitrogen (N) in maize plants is taken up by the root at the reproductive stage. Little is known about how the root of an adult plant responds to heterogeneous nutrient supply. In this study, root morphological and physiological adaptations to nitrate‐rich and nitrate‐poor patches and corresponding gene expression of ZmNrt2.1 and ZmNrt2.2 of maize seedlings and adult plants were characterized. Local high nitrate (LoHN) supply increased both lateral root length (LRL) and density of the treated nodal roots of adult maize plants, but only increased LRL of the treated primary roots of seedlings. LoHN also increased plant total N acquisition but not N influx rate of the treated roots, when expressed as per unit of root length. Furthermore, LoHN markedly increased specific root length (m g?1) of the treated roots but significantly inhibited the growth of the lateral roots outside of the nitrate‐rich patches, suggesting a systemic carbon saving strategy within a whole root system. Surprisingly, local low nitrate (LoLN) supply stimulated nodal root growth of adult plants although LoLN inhibited growth of primary roots of seedlings. LoLN inhibited the N influx rate of the treated roots and did not change plant total N content. The gene expression of ZmNrt2.1 and ZmNrt2.2 of the treated roots of seedlings and adult plants was inhibited by LoHN but enhanced by LoLN. In conclusion, maize adult roots responded to nitrate‐rich and nitrate‐poor patches by adaptive morphological alterations and displayed carbon saving strategies in response to heterogeneous nitrate supply.  相似文献   

16.
In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark‐Root (D‐Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D‐Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D‐Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.  相似文献   

17.
Abstract Exotic plant invasions are a significant problem in urban bushland in Sydney, Australia. In low‐nutrient Hawkesbury Sandstone communities, invasive plants are often associated with urban run‐off and subsequent increases in soil nutrients, particularly phosphorus. Fire is an important aspect of community dynamics in Sydney vegetation, and is sometimes used in bush regeneration projects as a tool for weed control. This study addressed the question: ‘Are there differences in post‐fire resprouting and germination of native and exotic species in nutrient‐enriched communities, compared with communities not disturbed by nutrient enrichment?’ We found that in non‐enriched areas, few exotic species emerged, and those that did were unable to achieve the rapid growth that was seen in exotic plants in the nutrient‐enriched areas. Therefore, fire did not promote the invasion of exotic plants into areas that were not nutrient‐enriched. In nutrient‐enriched areas after fire, the diversity of native species was lower than in the non‐enriched areas. Some native species were able to survive and compete with the exotic species in terms of abundance, per cent cover and plant height. However, these successful species were a different suite of natives to those commonly found in the non‐enriched areas. We suggest that although fire can be a useful tool for short‐term removal of exotic plant biomass from nutrient‐enriched areas, it does not promote establishment of native species that were not already present.  相似文献   

18.
Plant roots operate in an environment that is extremely heterogeneous, both spatially and temporally. Nonetheless, under conditions of limited diffusion and against intense competition from soil microorganisms, plant roots locate and acquire vital nitrogen resources. Several factors influence the mechanisms by which roots respond to ammonium and nitrate. Nitrogen that is required for cell division and expansion derives primarily from the apex itself absorbing rhizosphere ammonium and nitrate. Root density and extension are greater in nutrient solutions containing ammonium than in those containing nitrate as the sole nitrogen source. Root nitrogen acquisition alters rhizosphere pH and redox potential, which in turn regulate root cell proliferation and mechanical properties. The net result is that roots proliferate in soil zones rich in nitrogen. Moreover, plants develop thinner and longer roots when ammonium is the primary nitrogen source, an appropriate strategy for a relatively immobile nitrogen form.  相似文献   

19.
Resource Capture by Localized Root Proliferation: Why Do Plants Bother?   总被引:12,自引:0,他引:12  
ROBINSON  DAVID 《Annals of botany》1996,77(2):179-186
Using data from a well-known, published experiment [Drew (1975)TheNew Phytologist75: 479–490], the potential exploitationof locally available nutrients by barley roots is calculated.Local proliferation of lateral roots does not necessarily achievesignificantly greater exploitation of mobile soil resourceslike nitrate, but it does for less mobile ones such as phosphate.Despite this, the magnitude of the proliferative response isas great to locally available nitrate as it is to phosphate.This implies an ‘over-production’ of roots in responseto localized nitrate availability, prompting a re-evaluationof the nature and implications of the response mechanism(s)of roots to soil heterogeneity. Hordeum vulgare; barley; carbon; heterogeneity; lateral root; nitrate; localized nutrient supply; phosphate; proliferation; root  相似文献   

20.
Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global‐scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient‐based Root:Shoot ratios (R:S), averaged 0.30 for R:SN, 0.36 for R:SP, 0.32 for R:SK, 0.27 for R:SCa, and 0.35 for R:SMg, respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the Acrisols group displayed the lowest P, K, Ca, and Mg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号