首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Summary Apical shoot growth and storage protein content in various poplar species and clones were followed in trees growing in the field and in micropropagated plants cultivated in the growth chamber under a controlled environment. In autumn a 32 kD and a 36 kD vegetative storage protein accumulate in wood, bark and roots of poplar and comprise together about 25% of the soluble proteins. In spring, at the time of dormancy break, the storage proteins are degraded and 3 weeks after budburst these proteins are no longer immunologically detectable. As in autumn, short day exposure of black cottonwood plants (Populus trichocarpa Torr. and Gray) induces cessation of apical growth and accumulation of the 32 kD and 36 kD vegetative storage proteins in all clones studied. In order to simulate spring conditions, short day induced plants were transferred back to long days. Like the situation in spring, budburst and storage protein degradation occurred considerably earlier in clone 9/60 than in clone Muhle Larsen. The latter clone accumulates both in winter and after short day exposure more storage proteins than the former. Furthermore two P. trichocarpa clones differ qualitatively in storage protein content: they possess an additional 34 kD polypeptide which cross-reacts with the anti-32 kD antibody. In conclusion, apical shoot growth and the capacity to synthesize storage proteins can be easily followed in micropropagated poplar cultivated in the growth chamber under inducing photoperiods. This offers the major advantage of independence from the annual growth cycle. Within one species considerable clonal variance in storage protein content and in the induction times needed for dormancy and dormancy break were observed. The suitability of storage protein content and apical growth as early selection traits in breeding programs focusing on nitrogen efficient poplar and clones adapted to specific latitudes will be discussed.  相似文献   

4.
A. Cottignies 《Planta》1979,147(1):15-19
The shoot apex of the terminal bud was studied in four successive physiological states: during dormancy, when dormancy breaks, during the third week after the break of dormancy, and during a later typical period of active growth. DNA content was measured in Feulgen-stained nuclei of the axial zone, of the lateral zone, and of the rib meristem. The mitotic index was established for each zone of the meristem. During the period of dormancy, all the nuclei of the meristem are in phase G 1 of the cell cycle and are blocked at the same point common to all nuclei. When dormancy breaks, this blockage is removed simultaneously and all nuclei in the shoot apex resume their cell cycles starting at the same point. The cycles remain synchronized for awhile. In the axial zone they remain synchronized until the third week after resumption of active growth.  相似文献   

5.
6.
7.
8.
Auxin–cytokinin interactions in the control of shoot branching   总被引:1,自引:0,他引:1  
In many plant species, the intact main shoot apex grows predominantly and axillary bud outgrowth is inhibited. This phenomenon is called apical dominance, and has been analyzed for over 70 years. Decapitation of the shoot apex releases the axillary buds from their dormancy and they begin to grow out. Auxin derived from an intact shoot apex suppresses axillary bud outgrowth, whereas cytokinin induced by decapitation of the shoot apex stimulates axillary bud outgrowth. Here we describe the molecular mechanisms of the interactions between auxin and cytokinin in the control of shoot branching.  相似文献   

9.
Bud break in protected Northern European raspberry crops is often poor and uneven with many of the sub-apical buds remaining in a dormant state. In order to improve bud break and therefore yields, the mechanism controlling bud dormancy must be determined. Canes of the biennial cultivar ‘Glen Moy’ were forced as isolated single nodes, trisections, or as intact canes after different lengths of cold storage chill unit (CU) accumulation in order to determine whether the buds were in an endodormant or paradormant state. The results showed that buds on the lower parts of the intact canes remained in a dormant state long after buds from higher up the intact cane and also the single nodes from all parts of the cane had emerged from the deepest phase of endodormancy. This would imply that these buds were being held in a paradormant state until large amounts of chilling units (>1000 CU) had been accumulated. The trisected cane portions revealed almost no significant differences in bud break levels throughout the experiment when compared with the single nodes. This suggests that removal of the apical part of the cane would be effective in improving bud break by reducing the paradormant condition. A period of secondary dormancy was also observed in the intact canes which may also exacerbate the poor bud break observed in protected crops. This was not seen in the single nodes or the trisected canes which indicates that treatments which reduce paradormancy may also minimise the risk of secondary dormancy. By identifying the phase of bud dormancy which causes poor bud break, attention can now be focused on methods which overcome paradormancy in protected crops. Such methods might include tipping (removal of the cane apex), horizontal training methods, more efficient chilling methods, and chemical treatments.  相似文献   

10.
It has been widely shown that polyploidization can result in changes in cytosine methylation. However, little is known regarding how cytosine methylation changes in polyploids development, especially in polyploid trees. In this study, we investigated drifting changes of DNA methylation status at 5′-CCGG sites in the apical bud, young and mature leaf tissues of triploid black poplar (Populus. euramericana) with methylation-sensitive amplification polymorphism (MSAP) and assessed the expression of multiple DNA methyltransferases (MTases) and DNA demethylase during different developmental stages. MSAP analysis detected methylation levels at CG and CNG sites of diploid tissues reduced during development from bud to leaves, while for the triploid, methylation at CNG sites increased during development, but levels of methylation at CG sites first decreased in young leaves before increasing in mature leaves. MTase genes related to CG or CNG methylation were respectively preferential in different triploid tissues with high CG or CNG methylation levels. High expression of DNA demethylase was observed in tissue with high demethylation trends. These finding suggest CG and CNG methylation and their related enzymes are involved with different biological functions and networks of gene regulation in different developmental stages of triploid.  相似文献   

11.
Members of the CENTRORADIALIS (CEN)/TERMINAL FLOWER 1 (TFL1) subfamily control shoot meristem identity, and loss‐of‐function mutations in both monopodial and sympodial herbaceous plants result in dramatic changes in plant architecture. We studied the degree of conservation between herbaceous and woody perennial plants in shoot system regulation by overexpression and RNA interference (RNAi)‐mediated suppression of poplar orthologs of CEN, and the related gene MOTHER OF FT AND TFL 1 (MFT). Field study of transgenic poplars (Populus spp.) for over 6 years showed that downregulation of PopCEN1 and its close paralog, PopCEN2, accelerated the onset of mature tree characteristics, including age of first flowering, number of inflorescences and proportion of short shoots. Surprisingly, terminal vegetative meristems remained indeterminate in PopCEN1‐RNAi trees, suggesting the possibility that florigen signals are transported to axillary mersitems rather than the shoot apex. However, the axillary inflorescences (catkins) of PopCEN1‐RNAi trees contained fewer flowers than did wild‐type catkins, suggesting a possible role in maintaining the indeterminacy of the inflorescence apex. Expression of PopCEN1 was significantly correlated with delayed spring bud flush in multiple years, and in controlled environment experiments, 35S::PopCEN1 and RNAi transgenics required different chilling times to release dormancy. Considered together, these results indicate that PopCEN1/PopCEN2 help to integrate shoot developmental transitions that recur during each seasonal cycle with the age‐related changes that occur over years of growth.  相似文献   

12.
Bud dormancy in perennial plants adapts to environmental and seasonal changes. Bud dormancy is of ecological interest because it affects forest population growth characteristics and is of economical interest because it impacts wood production levels. To understand Pinus sylvestris L. var. mongolica litv. bud-dormancy and bud-burst mechanisms, we characterized the proteomes of their apical buds at the four critical stages that occur during the dormancy-to-growth transition. Ninety-six proteins with altered expression patterns were identified using NanoLC–ESI-MS/MS. The majority of these proteins (57%) are involved in metabolic and other cellular processes. For 28% of the proteins, a function could not be assigned. However, because their expression levels changed, they may be potential candidate bud development- or dormancy-related proteins. Of the 75 non-redundant bud proteins identified, ascorbate peroxidase, pathogenesis-related protein PR-10, and heat shock proteins dramatically increased during August and November, suggesting that they may involved in the initiation of bud dormancy. Conversely, S-adenosylmethionine synthetase, abscisic acid/stress-induced proteins, superoxide dismutase (SOD), caffeoyl-CoA O-methyltransferase, actin, and type IIIa membrane protein cp-wap13 had greater expression levels during April, suggesting that they may be involved in the initiation of bud dormancy-release. Cell division cycle protein 48 and eukaryotic initiation factors 4A-15 and 4A had greater expression levels during May, suggesting that they may regulate cell proliferate and differentiation in the shoot apical meristem. These observations provide insights into the molecular mechanisms that induce or break bud dormancy.  相似文献   

13.
14.
Patterns of DNA methylation, an important epigenetic modification involved in gene silencing and development, are disrupted in cancer cells. Understanding the functional significance of aberrant methylation in tumors remains challenging, due in part to the lack of suitable tools to actively modify methylation patterns. DNA demethylation caused by mammalian DNA methyltransferase inhibitors is transient and replication-dependent, whereas that induced by TET enzymes involves oxidized 5mC derivatives that perform poorly understood regulatory functions. Unlike animals, plants possess enzymes that directly excise unoxidized 5mC from DNA, allowing restoration of unmethylated C through base excision repair. Here, we show that expression of Arabidopsis 5mC DNA glycosylase DEMETER (DME) in colon cancer cells demethylates and reactivates hypermethylated silenced loci. Interestingly, DME expression causes genome-wide changes that include both DNA methylation losses and gains, and partially restores the methylation pattern observed in normal tissue. Furthermore, such methylome reprogramming is accompanied by altered cell cycle responses and increased sensibility to anti-tumor drugs, decreased ability to form colonospheres, and tumor growth impairment in vivo. Our study shows that it is possible to reprogram a human cancer DNA methylome by expression of a plant DNA demethylase.  相似文献   

15.
16.
Trehalose 6‐phosphate (Tre6P) is a signal of sucrose availability in plants, and has been implicated in the regulation of shoot branching by the abnormal branching phenotypes of Arabidopsis (Arabidopsis thaliana) and maize (Zea mays) mutants with altered Tre6P metabolism. Decapitation of garden pea (Pisum sativum) plants has been proposed to release the dormancy of axillary buds lower down the stem due to changes in sucrose supply, and we hypothesized that this response is mediated by Tre6P. Decapitation led to a rapid and sustained rise in Tre6P levels in axillary buds, coinciding with the onset of bud outgrowth. This response was suppressed by simultaneous defoliation that restricts the supply of sucrose to axillary buds in decapitated plants. Decapitation also led to a rise in amino acid levels in buds, but a fall in phosphoenolpyruvate and 2‐oxoglutarate. Supplying sucrose to stem node explants in vitro triggered a concentration‐dependent increase in the Tre6P content of the buds that was highly correlated with their rate of outgrowth. These data show that changes in bud Tre6P levels are correlated with initiation of bud outgrowth following decapitation, suggesting that Tre6P is involved in the release of bud dormancy by sucrose. Tre6P might also be linked to a reconfiguration of carbon and nitrogen metabolism to support the subsequent growth of the bud into a new shoot.  相似文献   

17.
18.
Induction and break of bud dormancy are important features for perennial plants surviving extreme seasonal variations in climate. However, the molecular mechanism of the dormancy regulation, still remain poorly understood. To better understand the molecular basis of poplar bud dormancy, we used a label-free quantitative proteomics method based on nanoscale ultra performance liquid chromatography-ESI-MSE for investigation of differential protein expression during dormancy induction, dormancy, and dormancy break in apical buds of poplar (Populus simonii × P. nigra). Among these identified over 300 proteins during poplar bud dormancy, there are 74 significantly altered proteins, most of which involved in carbohydrate metabolism (22 %), redox regulation (19 %), amino acid transport and metabolism (10 %), and stress response (8 %). Thirty-one of these proteins were up-regulated, five were down-regulated during three phase, and thirty-eight were expressed specifically under different conditions. Pathway analysis suggests that there are still the presence of various physiological activities and a particular influence on photosynthesis and energy metabolism during poplar bud dormancy. Differential expression patterns were identified for key enzymes involved in major metabolic pathways such as glycolysis and the pentose phosphate pathway, thus manifesting the interplay of intricate molecular events in energy generation for new protein synthesis in the dormant buds. Furthermore, there are significant changes present in redox regulation and defense response proteins, for instance in peroxidase and ascorbate peroxidase. Overall, this study provides a better understanding of the possible regulation mechanisms during poplar bud dormancy.  相似文献   

19.
20.
We investigated the short day (SD)-induced transition to dormancy in wild-type hybrid poplar (Populus tremula x P. tremuloides) and its absence in transgenic poplar overexpressing heterologous PHYTOCHROME A (PHYA). CENTRORADIALIS-LIKE1 (CENL1), a poplar ortholog of Arabidopsis thaliana TERMINAL FLOWER1 (TFL1), was markedly downregulated in the wild-type apex coincident with SD-induced growth cessation. By contrast, poplar overexpressing a heterologous Avena sativa PHYA construct (P35S:AsPHYA), with PHYA accumulating in the rib meristem (RM) and adjacent tissues but not in the shoot apical meristem (SAM), upregulated CENL1 in the RM area coincident with an acceleration of stem elongation. In SD-exposed heterografts, both P35S:AsPHYA and wild-type scions ceased growth and formed buds, whereas only the wild type assumed dormancy and P35S:AsPHYA showed repetitive flushing. This shows that the transition is not dictated by leaf-produced signals but dependent on RM and SAM properties. In view of this, callose-enforced cell isolation in the SAM, associated with suspension of indeterminate growth during dormancy, may require downregulation of CENL1 in the RM. Accordingly, upregulation of CENL1/TFL1 might promote stem elongation in poplar as well as in Arabidopsis during bolting. Together, the results suggest that the RM is particularly sensitive to photoperiodic signals and that CENL1 in the RM influences transition to dormancy in hybrid poplar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号