首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Our previous data showed that apoptotic suppressors inhibit aluminum (Al)-induced programmed cell death (PCD) and promote Al tolerance in yeast cells, however, very little is known about the underlying mechanisms, especially in plants. Here, we show that the Caenorhabditis elegans apoptotic suppressor Ced-9, a Bcl-2 homologue, inhibited both the Al-induced PCD and Al-induced activity of caspase-like vacuolar processing enzyme (VPE), a crucial executioner of PCD, in tobacco. Furthermore, we show that Ced-9 significantly alleviated Al inhibition of root elongation, decreased Al accumulation in the root tip and greatly inhibited Al-induced gene expression in early response to Al, leading to enhancing the tolerance of tobacco plants to Al toxicity. Our data suggest that Ced-9 promotes Al tolerance in plants via inhibition of Al-induced PCD, indicating that conserved negative regulators of PCD are involved in integrated regulation of cell survival and Al-induced PCD by an unidentified mechanism.  相似文献   

2.
The Arabidopsis WUSCHEL (WUS) protein, which plays an important role in the specification of the stem cells in the shoot apical meristem (SAM), contains an 'atypical' homeodomain (HD) with extra residues in its loop and turn regions. We speculated that a WUS-type atypical HD protein might also be involved in the specification and maintenance of the root apical meristem (RAM) stem cells of rice. To investigate this possibility, we isolated and characterized a rice WUS-type homeobox gene designated quiescent-center-specific homeobox (QHB) gene. Using transformants carrying the QHB promoter-GUS and in situ hybridization, we found that QHB was specifically expressed in the central cells of a quiescent center (QC) of the root. During embryogenesis and crown root formation, QHB expression was observed prior to the morphological differentiation of the root. However, we detected different QHB expression patterns in the process of the RAM development, specifically between radicle and crown root formation, suggesting that the cell-fate determination of the QC may be controlled by different mechanisms. We also produced transformants that overexpress QHB or Arabidopsis WUS. These transformants did not form crown roots, but developed multiple shoots from ectopic SAMs with malformed leaves. On the basis of these observations, we propose that the WUS-type homeobox gene is involved in the specification and maintenance of the stem cells (QC cells) in the RAM, by a mechanism similar to that for WUS in the SAM.  相似文献   

3.
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUSCLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species. S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007.  相似文献   

4.
The behavior of cell nuclei, mitochondrial nucleoids (mt-nucleoids) and plastid nucleoids (ptnucleoids) was studied in the root apical meristem of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4′-6-diamidino-2-phenylindole for light-microscopic autoradiography and microphotometry. Synthesis of cell nuclear DNA and cell division were both active in the root apical meristem between 0 μm and 300 μm from the central cells. It is estimated that the cells generated in the lower part of the root apical meristem enter the elongation zone after at least four divisions. Throughout the entire meristematic zone, individual cells had mitochondria which contained 1–5 mt-nucleoids. The number of mitochondria increased gradually from 65 to 200 in the meristem of the central cylinder. Therefore, throughout the meristem, individual mitochondria divided either once or twice per mitotic cycle. By contrast, based on the incorporation of [3H]thymidine into organelle nucleoids, syntheses of mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) occurred independently of the mitotic cycle and mainly in a restricted region (i.e., the lower part of the root apical meristem). Fluorimetry, using a videointensified microscope photon-counting system, revealed that the amount of mtDNA per mt-nucleoid in the cells in the lower part of the meristem, where mtDNA synthesis was active, corresponded to more than 1 Mbp. By contrast, in the meristematic cells just below the elongation zone of the root tip, the amount of mtDNA per mt-nucleoid fell to approximately 170 kbp. These findings strongly indicate that the amount of mtDNA per mitochondrion, which has been synthesized in the lower part of the meristem, is gradually reduced as a result of continual mitochondrial divisions during low levels of mtDNA synthesis. This phenomenon would explain why differentiated cells in the elongation zone have mitochondria that contain only extremely small amounts of mtDNA. This work was supported by a Grant-in Aid (T.K.) for Special Research on Priority Areas (Project No. 02242102, Cellular and Molecular Basis for Reproduction Processes in Plants) from the Ministry of Education, Science and Culture of Japan and by a Grant-in Aid (T.K.) for Original and Creative Research Project on Biotechnology from the Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

5.
In order to elucidate the nature of the response of potato to impact injury at the biochemical level, changes in the location of the enzyme responsible for the discoloration, polyphenol oxidase, were determined using immunogold location with an antibody specific for potato tuber polyphenol oxidase. Tissue printing revealed that the enzyme was distributed throughout the tuber. Following impact injury, both tissue printing and quantitative electron microscopy indicated that there was no increase in the level of the enzyme although there was subcellular redistribution of polyphenol oxidase. This redistribution was first apparent at 12 h after impact, as determined by the use of confocal immunolocation, and coincided with loss of membrane integrity. These changes were examined in parallel with a number of stress-related parameters in both impact and wound responses. Wounding was accompanied by active gene expression and protein synthesis, leading to metabolic activity and tissue repair. In contrast, the bruising response was characterised by a limited active response and vital-staining methods indicated that after 16 h the tissue undergoes cell death. Received: 4 June 1998 / Accepted: 18 September 1998  相似文献   

6.
* BACKGROUND AND AIMS: The Podostemaceae are a family of unusual aquatic angiosperms that live in rapids and waterfalls. To adapt to such extreme habitats, the family shows unusual morphologies. This study investigated the developmental anatomy of the shoot of Zeylanidium subulatum borne on the prostrate root attached to submerged rock surfaces. * METHODS: Shoots of Z. subulatum were observed under the microscope using resin-sections. * KEY RESULTS: The shoot has no shoot apical meristem (SAM) and, without it, forms leaves distichously dorsiventrally facing the immediately older leaf. A new leaf forms on the adaxial side of a pre-existing leaf and also on the abaxial side of a leaf on flowering shoots. In both cases, the young leaf is endogenous below the older leaf and maintains histological continuity with it. Shortly after internal initiation, the leaf primordia become separate from each other due to cleavage between adjacent leaves of opposite ranks. The cleavage is caused by intercellular separation as well as by degeneration of vacuolated cells. Loss of the SAM is probably linked with the speculated shift of the site of leaf formation to the root. * CONCLUSIONS: The 'shoot' of Z. subulatum is characterized by the absence of a SAM, endogenous leaf formation in the absence of a SAM, cleavage between leaf primordia, and adventitious leaf formations. These innovations occur in some Podostemaceae that have become increasingly adapted to extreme aquatic habitats.  相似文献   

7.
8.
A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by -rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.Abbreviations ACN apparent cell number - LI, LII, LI-LII sectors restricted to the epidermis, the subepidermis, or encompassing epidermis and subepidermis - PCN progenitor cell  相似文献   

9.
The potato tuber starch trait is changed depending on the composition of amylose and amylopectin. The amount of amylopectin is determined by the activity of the starch branching enzymes SBE1, SBE2, and SBE3 in potato. SBE3, a homolog of rice BEI, is a major gene that is abundant in tubers. In this study, we created mutants of the potato SBE3 gene using CRISPR/Cas9 attached to the translation enhancer dMac3. Potato has a tetraploid genome, and a four-allele mutant of the SBE3 gene is desired. Mutations in the SBE3 gene were found in 89 of 126 transformants of potato plants. Among these mutants, 10 lines contained four mutant SBE3 genes, indicating that 8% efficiency of target mutagenesis was achieved. These mutants grew normally, similar to the wild-type plant, and yielded sufficient amounts of tubers. The potato starch in these tubers was similar to that of the rice BEI mutant. Western blot analysis revealed the defective production of SBE3 in the mutant tubers, suggesting that these transformants were loss-of-function mutants of SBE3.  相似文献   

10.
Cline MG  Oh C 《Annals of botany》2006,98(4):891-897
BACKGROUND AND AIMS: Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. METHODS: The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). KEY RESULTS: Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. CONCLUSION: The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.  相似文献   

11.
Transgenic potatoes expressing reduced levels of granule-bound starch synthase I (GBSSI) have been used to investigate whether the synthesis of amylose occurs at the surface of the starch granule or within the matrix formed by the synthesis and organization of amylopectin. Amylose in these potatoes is wholly or largely confined to a central region of the granule. Consequently this core region stains blue with iodine whereas the peripheral zone stains red. By making extensive measurements of the relative sizes of the granules and their blue-staining cores in tubers over a range of stages of development, we have established that the blue core increases in size as the granule grows. The extent of the increase in size of the blue core is greater in potatoes with higher levels of GBSSI. These data show that amylose synthesis occurs within the matrix of the granule, and are consistent with the idea that the space available in the matrix may be an important determinant of the amylose content of storage starches.  相似文献   

12.
Ormenese S  Havelange A  Deltour R  Bernier G 《Planta》2000,211(3):370-375
 The frequency of plasmodesmata increases in the shoot apical meristem of plants of Sinapis alba L. induced to flower by exposure to a single long day. This increase is observed within all cell layers (L1, L2, L3) as well as at the interfaces between these layers, and it occurs in both the central and peripheral zones of the shoot apical meristem. The extra plasmodesmata are formed only transiently, from 28 to 48 h after the start of the long day, and acropetally since they are detectable in L3 4 h before they are seen in L1 and L2. These observations indicate that (i) in the Sinapis shoot apical meristem at floral transition, there is an unfolding of a single field with increased plasmodesmatal connectivity, and (ii) this event is an early effect of the arrival at this meristem of the floral stimulus of leaf origin. Since (i) the wave of increased frequency of plasmodesmata is 12 h later than the wave of increased mitotic frequency (A. Jacqmard et al. 1998, Plant cell proliferation and its regulation in growth and development, pp. 67–78; Wiley), and (ii) the increase in frequency of plasmodesmata is observed in all cell walls, including in walls not deriving from recent divisions (periclinal walls separating the cell layers), it is concluded that the extra plasmodesmata seen at floral transition do not arise in the forming cell plate during mitosis and are thus of secondary origin. Received: 4 October 1999 / Accepted: 23 December 1999  相似文献   

13.
One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.  相似文献   

14.
以二倍体马铃薯试管苗为试材,研究不同通气条件下乙烯生理拮抗剂硫代硫酸银(STS)对试管苗生长和抗氧化酶活性影响的结果表明:通气条件下培养的试管苗茎高降低,叶面积和叶绿素含量增加,培养基中附加STS的效果更为明显,无论在通气还是不通气条件下,培养基中加STS的试管苗茎高降低,叶面积和叶绿素含量增加,均达极显著水平.通气和培养基中加STS的试管苗中丙二醛(MDA)含量下降。通气条件下超氧化物歧化酶(要SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性提高;培养基中加STS的试管苗中SOD活性提高,POD和CAT活性下降。  相似文献   

15.
S. Abel  K. Glund 《Planta》1987,172(1):71-78
A ribonuclease which was previously shown to be located in isolated vacuoles from suspension-cultured cells of tomato (Lycopersicon esculentum L.; Abel and Glund 1986, Physiol. Plant. 66, 79–86) has been purified to near homogeneity. Purification was up to 55000-fold with a yield of about 20%. The vacuolar origin of the protein was evidenced by comparing its electrophoretic mobility, isoelectric point, pH-optimum for activity and other properties with that of the RNA-degrading activity present in isolated vacuoles. The molecular weight of the native single polypeptide chain was estimated at 17500 and 20300 by gel filtration and sedimentation analysis, respectively. The enzyme hydrolyzed only single-stranded RNA with a mode of action that was endonucleolytic. The vacuolar ribonuclease had no requirement for divalent metal ions, and did not exhibit phosphomonoesterase (EC 3.1.3.1; EC 3.1.3.2) and phosphodiesterase (EC 3.1.15.1; EC 3.1.16.1) activity. The specificity of the enzyme has been studied by using homopolyribonucleotides as substrates. The end-products obtained were the respective nucleoside 2:3-cyclic monophosphates and, to minor extents, the corresponding nucleoside 3(2)-monophosphates. According to these observations, the vacuolar ribonuclease from tomato can be classified as ribonuclease I (EC 3.1.27.1).Abbreviations DEAE diethylaminoethyl - RNase ribonuclease - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

16.
Background Aims and Scope  The pulp and paper (P&P) industry is traditionally known to be a large contributor to environmental pollution due its large consumptions of energy and chemicals. Enzymatic processing, however, offers potential opportunities for changing the industry towards more environmentally friendly and efficient operations compared to the conventional methods. The aims of the present study has been to investigate whether the enzyme technology is a more environmentally sound alternative than the conventional ways of producing paper. The study addresses five enzyme applications by quantitative means and discusses the environmental potential of a range of other enzyme applications by qualitative means. Methods  LCA is used as analytical tool and modelling is facilitated in SimaPro software. Foreground LCA data are production/company specific and collected from P&P technology service providers, specific P&P companies and P&P researchers. The background data on energy systems, auxiliary chemicals, etc. are primarily taken from the ecoinvent database. Results  The study shows that fossil energy consumption and potential environmental impacts (global warming, acidification, nutrient enrichment, photochemical smog formation) induced by enzyme production are low compared with the impacts that they save when applied in bleach boosting, refining, pitch control, deinking, and stickies control. Discussion  The general explanation is that small amounts of enzyme provide the same function as large amounts of chemicals and that enzymatic processes generally require less fossil energy inputs than conventional processes. Data quality assessments and sensitivity analyses indicate that this observation is robust for all processes except deinking, although the results are subject to uncertainty and much variation. Conclusions and Recommendations  The environmental improvements that can be achieved by application of enzymatic solutions in the P&P industry are promising. To get a greater penetration of enzymatic solutions in the market and to harvest the environmental advantages of biotechnological inventions, it is recommended that enzymatic solutions should be given more attention in, for instance, ‘Best Available Technology’ notes within the framework of the European Directive on Integrated Pollution Prevention and Control (IPPC). ESS-Submission Editor: Roland Hischier (roland.hischier@empa.ch)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号