首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an earlier study, we found that rice (Oryza sativa) grown in nutrient solution well‐supplied with Zn preferentially took up light 64Zn over 66Zn, probably as a result of kinetic fractionation in membrane transport processes. Here, we measure isotope fractionation by rice in a submerged Zn‐deficient soil with and without Zn fertilizer. We grew the same genotype as in the nutrient solution study plus low‐Zn tolerant and intolerant lines from a recombinant inbred population. In contrast to the nutrient solution, in soil with Zn fertilizer we found little or heavy isotopic enrichment in the plants relative to plant‐available Zn in the soil, and in soil without Zn fertilizer we found consistently heavy enrichment, particularly in the low‐Zn tolerant line. These observations are only explicable by complexation of Zn by a complexing agent released from the roots and uptake of the complexed Zn by specific root transporters. We show with a mathematical model that, for realistic rates of secretion of the phytosiderophore deoxymugineic acid (DMA) by rice, and realistic parameters for the Zn‐solubilizing effect of DMA in soil, solubilization and uptake by this mechanism is necessary and sufficient to account for the measured Zn uptake and the differences between genotypes.  相似文献   

2.
Summary Response of direct seeded rice (cv. Bluebelle) to Zn was studied in flooded and nonflooded (field capacity) Crowley soil (pH 7.6) maintained at soil temperatures of 18 and 30°C. Urea and (NH4)2SO4 were compared as sources of N to determine their effect on plant uptake of Zn from ZnSO4 either mixed or surface applied to the soil. Grain yields were slightly higher from nonflooded than from flooded soil. Higher dry matter production at 30 than at 18°C was not related to Zn nutrition. Urea and (NH4)2SO4 resulted in similar yields and Zn uptake by flooded rice, but (NH4)2SO4 was superior for nonflooded rice in the absence of applied Zn. More fixation of mixed Zn by the limed Crowley soil probably caused its lower effectiveness, as compared to surface-applied Zn.  相似文献   

3.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

4.
1. Elevated CO2 can alter plant physiology and morphology, and these changes are expected to impact diet quality for insect herbivores. While the plastic responses of insect herbivores have been well studied, less is known about the propensity of insects to adapt to such changes. Genetic variation in insect responses to elevated CO2 and genetic interactions between insects and their host plants may exist and provide the necessary raw material for adaptation. 2. We used clonal lines of Rhopalosiphum padi (L.) aphids to examine genotype‐specific responses to elevated CO2. We used the host plant Schedonorus arundinaceus (tall fescue; Schreb), which is capable of asexual reproduction, to investigate host plant genotype‐specific effects and possible host plant‐by‐insect genotype interactions. The abundance and density of three R. padi genotypes on three tall fescue genotypes under three concentrations of CO2 (ambient, 700, and 1000 ppm) in a controlled greenhouse environment were examined. 3. Aphid abundance decreased in the 700 ppm CO2 concentration, but increased in the 1000 ppm concentration relative to ambient. The effect of CO2 on aphid density was dependent on host plant genotype; the density of aphids in high CO2 decreased for two plant genotypes but was unchanged in one. No interaction between aphid genotype and elevated CO2 was found, nor did we find significant genotype‐by‐genotype interactions. 4. This study suggests that the density of R. padi aphids feeding on tall fescue may decrease under elevated CO2 for some plant genotypes. The likely impact of genotype‐specific responses on future changes in the genetic structure of plant and insect populations is discussed.  相似文献   

5.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

6.
Decreases in nutrient availability after loss of soil-water saturation are significant constraints to productivity in lowland rainfed rice soils. The effectiveness of soil amendments like lime and straw in ameliorating these constraints are poorly understood. This pot experiment was conducted in Cambodia to investigate changes in soil chemical properties and nutrient uptake by rice after applying lime or straw to continuously flooded or intermittently flooded soil. In continuously flooded soils, exchangeable Al decreased to below 0.2 cmolc/kg. Liming (pH 6.5–6.8) the continuously flooded soil decreased the levels of acetate extractable Fe and P, plant P uptake and shoot dry matter, but had no effect on either Bray-1 or Olsen extractable P values. By contrast, the addition of straw (3.5 g dry straw/kg soil) increased Bray-1, Olsen, and acetate extractable P, plant P uptake, shoot P, and shoot dry matter. The non-amended soils became strongly acidic after loss of soil water saturation: extractable Al increased to 1.0 cmolc/kg, a potentially harmful level for rice. By contrast, extractable P decreased markedly under loss of soil water saturation as did plant P uptake, shoot P, and shoot dry matter. With loss of soil water saturation, liming substantially depressed the levels of Al but it did not increase plant P uptake, shoot P, and shoot dry matter. Straw addition not only decreased extractable Al levels to well below 0.6 cmolc/kg under loss of soil water saturation, but it also increased extractability of soil P, plant P uptake, shoot P, and shoot dry matter. Thus, in rainfed environments, the incorporation of straw may be more effective than liming to pH 6.8 for minimising the negative effects of temporary loss of soil-water saturation on P availability, P uptake, and growth of rice.  相似文献   

7.
The natural abundance of 15N in plant biomass has been used to infer how N dynamics change with elevated atmospheric CO2 and changing water availability. However, it remains unclear if atmospheric CO2 effects on plant biomass 15N are driven by CO2-induced changes in soil moisture. We tested whether 15N abundance (expressed as δ15N) in plant biomass would increase with increasing soil moisture content at two atmospheric CO2 levels. In a greenhouse experiment we grew sunflower (Helianthus annuus) at ambient and elevated CO2 (760 ppm) with three soil moisture levels maintained at 45, 65, and 85% of field capacity, thereby eliminating potential CO2-induced soil moisture effects. The δ15N value of total plant biomass increased significantly with increased soil moisture content at both CO2 levels, possibly due to increased uptake of 15N-rich organic N. Although not adequately replicated, plant biomass δ15N was lower under elevated than under ambient CO2 after adjusting for plant N uptake effects. Thus, increases in soil moisture can increase plant biomass δ15N, while elevated CO2 can decrease plant biomass δ15N other than by modifying soil moisture.  相似文献   

8.
We evaluate the mid-term effects of two amendments and the establishment of R. officinalis on chemical and biochemical properties in a trace element contaminated soil by a mine spill and the possible use of this plant for stabilization purposes. The experiment was carried out using containers filled with trace element polluted soil, where four treatments were established: organic treatment (biosolid compost, OAR), inorganic treatment (sugar beet lime, IAR), control with plant (NAR) and control without plant (NA). Amendment addition and plant establishment contributed to restore soil chemical (pH, total organic carbon, and water soluble carbon) and biochemical properties (microbial biomass carbon and the enzymatic activities: aryl-sulphatase and protease). The presence of rosemary did not affect soluble (0.01 M CaCl2) Cd and Zn and decreased trace element EDTA extractability in amended soils. There were no negative effects found on plant growth and nutrient content on polluted soils (NAR, OAR, and IAR). Trace element contents were within normal levels in plants. Therefore, rosemary might be a reliable option for successful phytostablization of moderate trace element contaminated soils.  相似文献   

9.
A principal driver of biogeochemical weathering of the Earth's crust is soil CO2, produced mainly by plant roots and soil heterotrophs, a water‐soluble gas that forms carbonic acid which reacts with soil minerals via cation exchange and mineral dissolution. We examined effects of elevated atmospheric CO2 (ambient + 200 ppmv) in a young pine forest on belowground carbonic acid chemistry of soil water. Soil water was collected every 2–3 weeks over a 5‐year period from O horizons and at 15, 70, and 200 cm in mineral soils at the Duke free air CO2 enrichment facility located in a warm temperate climate in North Carolina, USA. Concentrations of major ions were volume‐weighted and statistically analyzed using linear mixed‐effects models. Experimental interest was placed on interactive effects of CO2 treatment and time: to test effects of gradually increasing CO2 in deep soil horizons where CO2 is highest in concentration, and to protect against inherent plot‐to‐plot differences in soil water chemistry being interpreted as responses to CO2 treatments. Although significant time‐dependent interactive effects were reported for soil CO2, interactive effects were not significant for soil water constituents. These data, combined with limited pretreatment sampling of soil water chemistry and recently determined large heterogeneity in soil solid chemistry at this site, indicate that CO2‐weathering response is smaller than the more‐than‐doubling of weathering reported previously and that increases in weathering are masked by in situ soil heterogeneity. Although the hypothesis that elevated CO2 increases cation leaching and weathering dissolution is supported in laboratory experiments and field studies, quantifying the stimulation of chemical weathering by elevated atmospheric CO2 remains to be tested rigorously in the field.  相似文献   

10.
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchange in tundra, we established an ecosystem warming experiment – the Carbon in Permafrost Experimental Heating Research (CiPEHR) project – in the northern foothills of the Alaska Range in Interior Alaska. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open‐top chambers to increase growing season air temperatures (summer warming). Winter warming increased soil temperature (integrated 5–40 cm depth) by 1.5 °C, which resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m?2 in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. In contrast to the limited effects on growing‐season C dynamics, winter warming caused drastic changes in winter respiration and altered the annual C balance of this ecosystem by doubling the net loss of CO2 to the atmosphere. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming effects on plant and soil processes resulted in 20% increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of CO2 respired from this ecosystem. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures and the strong potential for warming tundra to serve as a positive feedback to global climate change.  相似文献   

11.
Summary Nitrogen application increased Zn contents of flooded rice on two calcareous soils. Urea and (NH4)2SO4 being better N carriers than NH4NO3 resulted in higher increase. Nitrogen enhanced Zn contents partly through growth promotion but mainly by increasing soil Zn solubility and root efficiency for Zn absorption. Zinc solubility rose by an enigmatic mechanism and not from pH reduction or soluble Zn-HN3 complex formation as occurs for upland plants. Nitrogen aggravated Zn retention in upland plant roots as immobile Zn-protein complex was not important for rice. Bicarbonate inhibition of Zn uptake by rice from CO(NH2)2 application or its stimulation by lower redox potential from NH4NO3 addition were not involved.No. V in the series Micronutrient availability to cereals from calcareous soils.  相似文献   

12.
Atmospheric carbon dioxide (CO2) and reactive nitrogen (N) concentrations have been increasing due to human activities and impact the global carbon (C) cycle by affecting plant photosynthesis and decomposition processes in soil. Large amounts of C are stored in plants and soils, but the mechanisms behind the stabilization of plant‐ and microbial‐derived organic matter (OM) in soils are still under debate and it is not clear how N deposition affects soil OM dynamics. Here, we studied the effects of 4 years of elevated (13C‐depleted) CO2 and N deposition in forest ecosystems established in open‐top chambers on composition and turnover of fatty acids (FAs) in plants and soils. FAs served as biomarkers for plant‐ and microbial‐derived OM in soil density fractions. We analyzed above‐ and belowground plant biomass of beech and spruce trees as well as soil density fractions for the total organic C and FA molecular and isotope (δ13C) composition. FAs did not accumulate relative to total organic C in fine mineral fractions, showing that FAs are not effectively stabilized by association with soil minerals. The δ13C values of FAs in plant biomass increased under high N deposition. However, the N effect was only apparent under elevated CO2 suggesting a N limitation of the system. In soil fractions, only isotope compositions of short‐chain FAs (C16+18) were affected. Fractions of ‘new’ (experimental‐derived) FAs were calculated using isotope depletion in elevated CO2 plots and decreased from free light to fine mineral fractions. ‘New’ FAs were higher in short‐chain compared to long‐chain FAs (C20?30), indicating a faster turnover of short‐chain compared to long‐chain FAs. Increased N deposition did not significantly affect the quantity of ‘new’ FAs in soil fractions, but showed a tendency of increased amounts of ‘old’ (pre‐experimental) C suggesting that decomposition of ‘old’ C is retarded by high N inputs.  相似文献   

13.
Biogeochemical models that incorporate nitrogen (N) limitation indicate that N availability will control the magnitude of ecosystem carbon uptake in response to rising CO2. Some models, however, suggest that elevated CO2 may promote ecosystem N accumulation, a feedback that in the long term could circumvent N limitation of the CO2 response while mitigating N pollution. We tested this prediction using a nine‐year CO2xN experiment in a tidal marsh. Although the effects of CO2 are similar between uplands and wetlands in many respects, this experiment offers a greater likelihood of detecting CO2 effects on N retention on a decadal timescale because tidal marshes have a relatively open N cycle and can accrue soil organic matter rapidly. To determine how elevated CO2 affects N dynamics, we assessed the three primary fates of N in a tidal marsh: (1) retention in plants and soil, (2) denitrification to the atmosphere, and (3) tidal export. We assessed changes in N pools and tracked the fate of a 15N tracer added to each plot in 2006 to quantify the fraction of added N retained in vegetation and soil, and to estimate lateral N movement. Elevated CO2 alone did not increase plant N mass, soil N mass, or 15N label retention. Unexpectedly, CO2 and N interacted such that the combined N+CO2 treatment increased ecosystem N accumulation despite the stimulation in N losses indicated by reduced 15N label retention. These findings suggest that in N‐limited ecosystems, elevated CO2 is unlikely to increase long‐term N accumulation and circumvent progressive N limitation without additional N inputs, which may relieve plant–microbe competition and allow for increased plant N uptake.  相似文献   

14.
Elevated atmospheric CO2 concentrations increase plant productivity and affect soil microbial communities, with possible consequences for the turnover rate of soil carbon (C) pools and feedbacks to the atmosphere. In a previous analysis (Van Groenigen et al., 2014), we used experimental data to inform a one‐pool model and showed that elevated CO2 increases the decomposition rate of soil organic C, negating the storage potential of soil. However, a two‐pool soil model can potentially explain patterns of soil C dynamics without invoking effects of CO2 on decomposition rates. To address this issue, we refit our data to a two‐pool soil C model. We found that CO2 enrichment increases decomposition rates of both fast and slow C pools. In addition, elevated CO2 decreased the carbon use efficiency of soil microbes (CUE), thereby further reducing soil C storage. These findings are consistent with numerous empirical studies and corroborate the results from our previous analysis. To facilitate understanding of C dynamics, we suggest that empirical and theoretical studies incorporate multiple soil C pools with potentially variable decomposition rates.  相似文献   

15.
Elevated CO2, N deposition and climate change can alter ecosystem‐level nutrient cycling both directly and indirectly. We explored the interactive effects of these environmental changes on extracellular enzyme activity and organic matter fractionation in soils of a California annual grassland. The activities of hydrolases (polysaccharide‐degrading enzymes and phosphatase) increased significantly in response to nitrate addition, which coincided with an increase in soluble C concentrations under ambient CO2. Water addition and elevated CO2 had negative but nonadditive effects on the activities of these enzymes. In contrast, water addition resulted in an increase in the activities of lignin‐degrading enzymes (phenol oxidase and peroxidase), and a decrease in the free light fraction (FLF) of soil organic matter. Independent of treatment effects, lignin content in the FLF was negatively correlated with the quantity of FLF across all samples. Lignin concentrations were lower in the aggregate‐occluded light fraction (OLF) than the FLF, and there was no correlation between percent lignin and OLF quantity, which was consistent with the protection of soil organic matter in aggregates. Elevated CO2 decreased the quantity of OLF and increased the OLF lignin concentration, however, which is consistent with increased degradation resulting from increased turnover of soil aggregates. Overall, these results suggest that the effects of N addition on hydrolase activity are offset by the interactive effects of water addition and elevated CO2, whereas water and elevated CO2 may cause an increase in the breakdown of soil organic matter as a result of their effects on lignin‐degrading enzymes and soil aggregation, respectively.  相似文献   

16.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

17.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

18.
The net balance of greenhouse gas (GHG) exchanges between terrestrial ecosystems and the atmosphere under elevated atmospheric carbon dioxide (CO2) remains poorly understood. Here, we synthesise 1655 measurements from 169 published studies to assess GHGs budget of terrestrial ecosystems under elevated CO2. We show that elevated CO2 significantly stimulates plant C pool (NPP) by 20%, soil CO2 fluxes by 24%, and methane (CH4) fluxes by 34% from rice paddies and by 12% from natural wetlands, while it slightly decreases CH4 uptake of upland soils by 3.8%. Elevated CO2 causes insignificant increases in soil nitrous oxide (N2O) fluxes (4.6%), soil organic C (4.3%) and N (3.6%) pools. The elevated CO2‐induced increase in GHG emissions may decline with CO2 enrichment levels. An elevated CO2‐induced rise in soil CH4 and N2O emissions (2.76 Pg CO2‐equivalent year?1) could negate soil C enrichment (2.42 Pg CO2 year?1) or reduce mitigation potential of terrestrial net ecosystem production by as much as 69% (NEP, 3.99 Pg CO2 year?1) under elevated CO2. Our analysis highlights that the capacity of terrestrial ecosystems to act as a sink to slow climate warming under elevated CO2 might have been largely offset by its induced increases in soil GHGs source strength.  相似文献   

19.
  • 1 In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998–1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass.
  • 2 In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8–6.2 mol m?2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above‐ground plant biomass, had a net CO2 loss of 1.1–7.1 mol m?2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment.
  • 3 Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes.
  相似文献   

20.
The effects of elevated CO2 (eCO2) on the relative uptake of inorganic and organic nitrogen (N) are unclear. The uptake of different N sources by pak choi (Brassica chinensis L.) seedlings supplied with a mixture of nitrate, glycine and ammonium was studied using 15N‐labelling under ambient CO2 (aCO2) (350 ppm) or eCO2 (650 ppm) conditions. 15N‐labelled short‐term uptake and 15N‐gas chromatography mass spectrometry (GC–MS) were applied to measure the effects of eCO2 on glycine uptake and metabolism. Elevated CO2 increased the shoot biomass by 36% over 15 days, but had little effect on root growth. Over the same period, the N concentrations of shoots and roots were decreased by 30 and 2%, respectively. Elevated CO2 enhanced the uptake and N contribution of glycine, which accounted for 38–44% and 21–40% of total N uptake in roots and shoots, respectively, while the uptake of nitrate and ammonium was reduced. The increased glycine uptake resulted from the enhanced active uptake and enhanced metabolism in the roots. We conclude that eCO2 may increase the uptake and contribution of organic N forms to total plant N nutrition. Our findings provide new insights into plant N regulation under eCO2 conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号