首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Sugars increase with drought stress in plants and accumulate in the vacuole. However, the exact molecular mechanism underlying this process is not clear yet. In this study, protein interaction and phosphorylation experiments were conducted for sucrose transporter and CIPK kinase in apple. The specific phosphorylation site of sucrose transporter was identified with mass spectrometry. Transgenic analyses were performed to characterize their biological function. It was found that overexpression of sucrose transporter gene MdSUT2.2 in apple plants promoted sugar accumulation and drought tolerance. MdSUT2.2 protein was phosphorylated at Ser381 site in response to drought. A DUALmembrane system using MdSUT2.2 as bait through an apple cDNA library got a protein kinase MdCIPK22. Bimolecular fluorescence complementary (BiFC), pull‐down and co‐immunoprecipitation (Co‐IP) assays further demonstrated that MdCIPK22 interacted with MdSUT2.2. A series of transgenic analysis showed that MdCIPK22 was required for the drought‐induced phosphylation at Ser381 site of MdSUT2.2 protein, and that it enhanced the stability and transport activity of MdSUT2.2 protein. Finally, it was found that MdCIPK22 overexpression promoted sugar accumulation and improved drought tolerance in an MdSUT2.2‐dependent manner in transgenic apple plants. MdCIPK22‐MdSUT2.2 regulatory module shed light on the molecular mechanism by which plant accumulates sugars and enhances tolerance in response to drought stress.  相似文献   

2.
Soil salinity is one of the major abiotic stressors that negatively affect crop growth and yield. Salt stress can regulate antioxidants and the accumulation of osmoprotectants. In the study, a sucrose transporter MdSUT2.2 was identified in apple. Overexpression of MdSUT2.2 gene increased salt tolerance in the transgenic apple, compared with the WT control “Gala.” In addition, it was found that protein MdSUT2.2 was phosphorylated at Ser254 site in response to salt. A DUAL membrane yeast hybridization system through an apple cDNA library demonstrated that a protein kinase MdCIPK13 interacted with MdSUT2.2. A series of transgenic analysis in apple calli showed that MdCIPK13 was required for the salt‐induced phosphorylation of MdSUT2.2 protein and enhanced its stability and transport activity. Finally, it was found that MdCIPK13 improved salt resistance in an MdSUT2.2‐dependent manner. These findings had enriched our understanding of the molecular mechanisms underlying abiotic stress.  相似文献   

3.
CBL-interacting protein kinases (CIPKs) are involved in many aspects of plant responses to abiotic stresses. However, their functions are poorly understood in fruit trees. In this study, a salt-induced MdCIPK6L gene was isolated from apple. Its expression was positively induced by abiotic stresses, stress-related hormones and exogenous Ca(2+). MdCIPK6L was not homologous to AtSOS2, however, its ectopic expression functionally complemented Arabidopsis sos2 mutant. Furthermore, yeast two-hybrid assay showed that MdCIPK6L protein interacted with AtSOS3, indicating that it functions in salt tolerance partially like AtSOS2 through SOS pathway. As a result, the overexpression of both MdCIPK6L and MdCIPK6LT175D remarkably enhanced the tolerance to salt, osmotic/drought and chilling stresses, but did not affect root growth, in transgenic Arabidopsis and apple. Also, T-to-D mutation to MdCIPK6L at Thr175 did not affect its function. These differences between MdCIPK6L and other CIPKs, especially CIPK6s, indicate that MdCIPK6L encodes a novel CIPK in apple. Finally, MdCIPK6L overexpression also conferred tolerance to salt, drought and chilling stresses in transgenic tomatoes. Therefore, MdCIPK6L functions in stress tolerance crossing the species barriers, and is supposed to be a potential candidate gene to improve stress tolerance by genetic manipulation in apple and other crops.  相似文献   

4.
Soil salinity hinders the growth of most higher plants and becomes a gradually increasing threat to the agricultural production of such crops as the woody plant apple. In this study, a calcineurin B-like protein (CBL)‐interacting protein kinase, MdCIPK24‐LIKE1 (named as MdSOS2L1), was identified. Quantitative real‐time polymerase chain reaction (qRT‐PCR) assay revealed that the expression of MdSOS2L1 was upregulated by CaCl2. Yeast two‐hybrid (Y2H) assay and transiently transgenic analysis demonstrated that the MdSOS2L1 protein kinase physically interacted with MdCBL1, MdCBL4 and MdCBL10 proteins to increase salt tolerance in apple. Furthermore, iTRAQ proteome combined with liquid chromatography‐tandem mass spectrometry (LC/MS) analysis found that several proteins, which are involved in reactive oxygen species (ROS) scavenging, procyanidin biosynthesis and malate metabolism, were induced in MdSOS2L1‐overexpressing apple plants. Subsequent studies have shown that MdSOS2L1 increased antioxidant metabolites such as procyanidin and malate to improve salt tolerance in apple and tomato. In summary, our studies provide a mechanism in which SOS2L1 enhances the salt stress tolerance in apple and tomato.  相似文献   

5.
Heterotrimeric G proteins consisting of Gα, Gβ and Gγ are conserved signaling hubs in eukaryotes. Without analogs to canonical animal G protein‐coupled receptors, plant cells are thought to use RGS1 and a yet unknown mechanism to regulate the activity of Gα. Meanwhile, the exact role of canonical Gα in plant innate immunity remains controversial. Here, we report multiple immune deficiencies in the null allele of Arabidopsis Gα (GPA1) in response to bacterial flg22 elicitor, clarifying a positive regulatory role of GPA1 in flg22 signaling. We also detect overall increased phosphorylation of GPA1 but reduced phosphorylation at Thr19 upon flg22 elicitation. Interestingly, flg22 could not induce phosphorylation of GPA1T19A and GPA1T19D, suggesting that the dynamic Thr19 phosphorylation is required for GPA1 to respond to flg22. Moreover, flg22‐induced GPA1 phosphorylation is largely abolished in the absence of BAK1 in vivo, and BAK1 could phosphorylate GPA1 but not GPA1T19A in vitro at the phosphorylation sites identified in vivo, suggesting BAK1 is likely the kinase for GPA1 phosphorylation in response to flg22. Furthermore, the T19A mutation could promote flg22‐induced association, rather than dissociation, between GPA1 and RGS1. Taken together, our findings shed new insights into the function and regulation of GPA1 in Arabidopsis defense signaling.  相似文献   

6.
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C‐terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK‐293) cells. Under basal conditions, MOPr is phosphorylated on Ser363 and Thr370, while in the presence of morphine or [D‐Ala2, NMe‐Phe4, Gly‐ol5]‐enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser356, Thr357 and Ser375. Using N‐terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C‐terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein‐coupled receptor kinase 2 (GRK2) phosphorylates Ser375, protein kinase C (PKC) phosphorylates Ser363, while CaMKII phosphorylates Thr370. Phosphorylation of the GST fusion protein of the C‐terminal tail of MOPr enhanced its ability to bind arrestin‐2 and ‐3. Hence, our study identifies both the basal and agonist‐stimulated phospho‐acceptor sites in the C‐terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.  相似文献   

7.
Arabidopsis thaliana acyl‐CoA‐binding protein 2 (ACBP2) is a stress‐responsive protein that is also important in embryogenesis. Here, we assign a role for ACBP2 in abscisic acid (ABA) signalling during seed germination, seedling development and the drought response. ACBP2 was induced by ABA and drought, and transgenic Arabidopsis overexpressing ACBP2 (ACBP2‐OXs) showed increased sensitivity to ABA treatment during germination and seedling development. ACBP2‐OXs also displayed improved drought tolerance and ABA‐mediated reactive oxygen species (ROS) production in guard cells, thereby promoting stomatal closure, reducing water loss and enhancing drought tolerance. In contrast, acbp2 mutant plants showed decreased sensitivity to ABA in root development and were more sensitive to drought stress. RNA analyses revealed that ACBP2 overexpression up‐regulated the expression of Respiratory Burst Oxidase Homolog D (AtrbohD) and AtrbohF, two NAD(P)H oxidases essential for ABA‐mediated ROS production, whereas the expression of Hypersensitive to ABA1 (HAB1), an important negative regulator in ABA signalling, was down‐regulated. In addition, transgenic plants expressing ACBP2pro:GUS showed beta‐glucuronidase (GUS) staining in guard cells, confirming a role for ACBP2 at the stomata. These observations support a positive role for ACBP2 in promoting ABA signalling in germination, seedling development and the drought response.  相似文献   

8.
9.
Chk2 is a critical regulator of the cellular DNA damage repair response. Activation of Chk2 in response to IR-induced damage is initiated by phosphorylation of the Chk2 SQ/TQ cluster domain at Ser19, Ser33, Ser35, and Thr68. This precedes autophosphorylation of Thr383/Thr387 in the T-loop region of the kinase domain an event that is a prerequisite for efficient kinase activity. We conducted an in-depth analysis of phosphorylation within the T-loop region (residues 366–406). We report four novel phosphorylation sites at Ser372, Thr378, Thr389, and Tyr390. Substitution mutation Y390F was defective for kinase function. The substitution mutation T378A ablated the IR induction of kinase activity. Interestingly, the substitution mutation T389A demonstrated a 6-fold increase in kinase activity when compared with wild-type Chk2. In addition, phosphorylation at Thr389 was a prerequisite to phosphorylation at Thr387 but not at Thr383. Quantitative mass spectrometry analysis revealed IR-induced phosphorylation and subcellular distribution of Chk2 phosphorylated species. We observed IR-induced increase in phosphorylation at Ser379, Thr389, and Thr383/Thr389. Phosphorylation at Tyr390 was dramatically reduced following IR. Exposure to IR was also associated with changes in the ratio of chromatin/nuclear localization. IR-induced increase in chromatin localization was associated with phosphorylation at Thr372, Thr379, Thr383, Thr389, Thr383/Thr387, and Thr383/Thr389. Chk2 hyper-phosphorylated species at Thr383/Thr387/Thr389 and Thr383/Thr387/Thr389/Tyr390 relocalized from almost exclusively chromatin to predominately nuclear expression, suggesting a role for phosphorylation in regulation of chromatin targeting and egress. The differential impact of T-loop phosphorylation on Chk2 ubiquitylation suggests a co-dependence of these modifications. The results demonstrate that a complex interdependent network of phosphorylation events within the T-loop exchange region regulates dimerization/autophosphorylation, kinase activation, and chromatin targeting/egress of Chk2.  相似文献   

10.
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates specific downstream protein kinases including CaMKI, CaMKIV and 5′-AMP-activated protein kinase. In order to examine the variety of CaMKK-mediated signaling pathways, we searched for novel CaMKK substrate(s) using N6-(1-methylbutyl)-ATP and genetically engineered CaMKKα mutant, CaMKKα (Phe230Gly), that was capable of utilizing this ATP analogue as a phosphate donor. Incubation of rat brain extracts with recombinant CaMKKα (Phe230Gly), but not with wild-type kinase, in the presence of N6-(1-methylbutyl)-ATP and Ca2+/CaM, induced significant threonine phosphorylation of a 50 kDa protein as well as CaMKI phosphorylation at Thr177. The 50 kDa CaMKK substrate was partially purified by using serial column chromatography, and was identified as Syndapin I by LC-MS/MS analysis. We confirmed that recombinant Syndapin I was phosphorylated by CaMKKα and β isoforms at Thr355in vitro. Phosphorylation of HA-Syndapin I at Thr355 in transfected HeLa cells was significantly induced by co-expression of constitutively active mutants of CaMKK isoforms. This is the first report that CaMKK is capable of phosphorylating a non-kinase substrate suggesting the possibility of CaMKK-mediated novel Ca2+-signaling pathways that are independent of downstream protein kinases.  相似文献   

11.
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.  相似文献   

12.
Colorectal cancer (CRC) is an aggressive malignancy with a high incidence and mortality rate. Although a targeting therapy has been developed, the 5‐year survival rate is still very low in CRC patients with distant metastasis. Thus, the identification of new targets is still significant for improving CRC treatment. Klotho is a tumor suppressor, and its expression is aberrant in CRC. In this study, the roles of the FLI‐1 gene in regulating Klotho gene expression and Klotho‐associated signaling, as well as the effects of FLI‐1 on colony formation, invasion, and apoptosis were investigated in CRC cell lines. The methylation of the FLI‐1 gene was analyzed using a commercial methylation kit. Results showed that FLI‐1 messenger RNA and protein expression were downregulated in six CRC cell lines when compared with the normal colon mucosal epithelial cell line, which negatively correlated with the level of DNA methylation. Silencing of FLI‐1 gene expression decreased Klotho protein expression and phosphorylation of β‐catenin protein at Thr41/Ser45, but increased Wnt3a and β‐catenin protein expression and IGF‐1R phosphorylation in HT29 cells. In contrast to silencing FLI‐1, overexpressing FLI‐1 significantly increased Klotho protein expression and phosphorylation of β‐catenin protein at Thr41/Ser45, but decreased Wnt3a and β‐catenin protein expression and IGF‐1R phosphorylation in Caco‐2 cells. Silencing of FLI‐1 gene expression significantly increased colony formation and invasion, but decreased apoptosis in HT29 cells. In contrast, overexpressing the FLI‐1 gene significantly decreased colony formation and invasion, but increased apoptosis in Caco‐2 cells. These findings suggest that FLI‐1 functions as a tumor suppressor in CRC cells and positively regulates Klotho signaling. Hypermethylation may be one of the causes of the loss of FLI‐1 gene expression in CRC cells.  相似文献   

13.
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress‐sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map‐based approach. Further analysis revealed that DS8 encoded a Nck‐associated protein 1 (NAP1)‐like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)‐mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.  相似文献   

14.
Eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) is a translational repressor that is characterized by its capacity to bind specifically to eIF4E and inhibit its interaction with eIF4G. Phosphorylation of 4E-BP1 regulates eIF4E availability, and therefore, cap-dependent translation, in cell stress. This study reports a physiological study of 4E-BP1 regulation by phosphorylation using control conditions and a stress-induced translational repression condition, ischemia-reperfusion (IR) stress, in brain tissue. In control conditions, 4E-BP1 was found in four phosphorylation states that were detected by two-dimensional gel electrophoresis and Western blotting, which corresponded to Thr69-phosphorylated alone, Thr69- and Thr36/Thr45-phosphorylated, all these plus Ser64 phosphorylation, and dephosphorylation of the sites analyzed. In control or IR conditions, no Thr36/Thr45 phosphorylation alone was detected without Thr69 phosphorylation, and neither was Ser64 phosphorylation without Thr36/Thr45/Thr69 phosphorylation detected. Ischemic stress induced 4E-BP1 dephosphorylation at Thr69, Thr36/Thr45, and Ser64 residues, with 4E-BP1 remaining phosphorylated at Thr69 alone or dephosphorylated. In the subsequent reperfusion, 4E-BP1 phosphorylation was induced at Thr36/Thr45 and Ser64, in addition to Thr69. Changes in 4E-BP1 phosphorylation after IR were according to those found for Akt and mammalian target of rapamycin (mTOR) kinases. These results demonstrate a new hierarchical phosphorylation for 4E-BP1 regulation in which Thr69 is phosphorylated first followed by Thr36/Thr45 phosphorylation, and Ser64 is phosphorylated last. Thr69 phosphorylation alone allows binding to eIF4E, and subsequent Thr36/Thr45 phosphorylation was sufficient to dissociate 4E-BP1 from eIF4E, which led to eIF4E-4G interaction. These data help to elucidate the physiological role of 4E-BP1 phosphorylation in controlling protein synthesis.  相似文献   

15.
A gene encoding attacin E, an inducible antibacterial protein from Hyalophora cecropia pupae, was cloned into the pRSETB Escherichia coli expression vector under the control of the T7 promoter. The resulting vector, pRSETBAtt, produced a fusion protein in E. coli JM109 of attacin with an N-terminal peptide containing six histidine residues in tandem. Fusion attacin was purified from cell lysates (6–9 mg l–1) by Ni2+-Sepharose affinity chromatography. Purified attacin protein was used as antigen to produce polyclonal antibody to detect attacin expressed in transgenic apple. Antibody capture immunoassay and immunoblot assays indicated that polyclonal antisera derived from fusion attacin had specific immunoreaction against attacins in the hemolymph of immunized pupae and attacin expressed in transgenic apple lines similar to native attacin antisera. Attacin expressed in transgenic apple could be quantified using immunoblot assays with the fusion attacin polyclonal antibody.  相似文献   

16.
17.
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2‐overexpressing tobacco lines exhibited lower Na+ but higher K+ accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na+/K+ homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2‐regulated salt stress tolerance.  相似文献   

18.
The signaling mechanisms mediating myocardial glucose transport are not fully understood. Sucrose nonfermenting AMP-activated protein kinase (AMPK)-related kinase (SNARK) is an AMPK-related protein kinase that is expressed in the heart and has been implicated in contraction-stimulated glucose transport in mouse skeletal muscle. We first determined if SNARK is phosphorylated on Thr208, a site critical for SNARK activity. Mice were treated with exercise, ischemia, submaximal insulin, or maximal insulin. Treadmill exercise slightly, but significantly increased SNARK Thr208 phosphorylation. Ischemia also increased SNARK Thr208 phosphorylation, but there was no effect of submaximal or maximal insulin. HL1 cardiomyocytes were used to overexpress wild-type (WT) SNARK and to knockdown endogenous SNARK. Overexpression of WT SNARK had no effect on ischemia-stimulated glucose transport; however, SNARK knockdown significantly decreased ischemia-stimulated glucose transport. SNARK overexpression or knockdown did not alter insulin-stimulated glucose transport or glycogen concentrations. To study SNARK function in vivo, SNARK heterozygous knockout mice (SNARK+/−) and WT littermates performed treadmill exercise. Exercise-stimulated glucose transport was decreased by ~50% in hearts from SNARK+/− mice. In summary, exercise and ischemia increase SNARK Thr208 phosphorylation in the heart and SNARK regulates exercise-stimulated and ischemia-stimulated glucose transport. SNARK is a novel mediator of insulin-independent glucose transport in the heart.  相似文献   

19.
20.
The 24p3 protein is a 25 KDa glycoprotein, having been purified from mouse uterine fluid. Thr54, Ser88, and Thr128/Ser129 on the protein molecule were predicted to be the phosphorylation site of casein kinase II, protein kinase C, and cAMP-dependent protein kinase, respectively. Incorporation of phosphate to this protein from [-32P]-ATP was tested in the solution suitable for the three kinases. Neither casein kinase II nor cAMP-dependent protein kinase reacted to the 24p3 protein; however, protein kinase C demonstrated phosphorylation to this protein. This phosphorylation may be competing with a polypeptide segment: Arg79-Tyr-Trp-Ilu-Arg-Thr-Phe-Val-Pro-Ser88-Ser-Arg-Ala-Gly-Gln-Phe-Thr-Leu-Gly97 in the 24p3 protein molecule. To support this theory, Ser88 is a phosphorylation site of protein kinase C on 24p3 protein. The enzyme kinetic parameter, based on the Michaelis-Menten equation, determined Km to be 2.96 M in the phosphorylation of 24p3 protein by the kinase. Both of the phosphorylated and dephosphorylated form of 24p3 protein can enhance the cAMP-dependent protein kinase activity in vitro. In addition, this experiment will show for the first time that serine-phosphorylated 24p3 protein exists in mouse uterine tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号