首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ultraviolet (UV)-induced DNA damage is a major risk factor for skin cancers including melanoma. UVRAG, originally identified to complement UV sensitivity in xeroderma pigmentosum (XP), has since been implicated in modulating macroautophagy/autophagy, in coordinating different intracellular trafficking pathways, and in maintaining chromosomal stability. Intriguingly, our recent study has demonstrated that UVRAG plays an essential role in protecting cells from UV-induced DNA damage by activating the nucleotide excision repair (NER) pathway. Since NER is the major mechanism by which cells maintain DNA integrity against UV insult, the inactivation of UVRAG seen in some melanoma may impart these cells with an ability to accumulate high-load UV mutagenesis, leading to cancer progression. Thus, this property of UVRAG has untapped potential to be of fundamental importance in understanding the genetics and pathogenesis of human skin cancer.  相似文献   

3.
The current increase in the incidence and severity of infectious diseases mandates improved understanding of the basic biology and DNA repair profiles of virulent microbes. In our studies of the major pathogen and model organism Neisseria meningitidis, we constructed a panel of mutants inactivating genes involved in base excision repair, mismatch repair, nucleotide excision repair (NER), translesion synthesis, and recombinational repair pathways. The highest spontaneous mutation frequency among the N. meningitidis single mutants was found in the MutY-deficient strain as opposed to mutS mutants in Escherichia coli, indicating a role for meningococcal MutY in antibiotic resistance development. Recombinational repair was recognized as a major pathway counteracting methyl methanesulfonate-induced alkylation damage in the N. meningitidis. In contrast to what has been shown in other species, meningococcal NER did not contribute significantly to repair of alkylation-induced DNA damage, and meningococcal recombinational repair may thus be one of the main pathways for removal of abasic (apurinic/apyrimidinic) sites and strand breaks in DNA. Conversely, NER was identified as the main meningococcal defense pathway against UV-induced DNA damage. N. meningitidis RecA single mutants exhibited only a moderate decrease in survival after UV exposure as opposed to E. coli recA strains, which are extremely UV sensitive, possibly reflecting the lack of a meningococcal SOS response. In conclusion, distinct differences between N. meningitidis and established DNA repair characteristics in E. coli and other species were identified.  相似文献   

4.
5.
We have identified two fission yeast homologs of budding yeast Rad4 and human xeroderma pigmentosum complementation group C (XP-C) correcting protein, designated Rhp4A and Rhp4B. Here we show that the rhp4 genes encode NER factors that are required for UV-induced DNA damage repair in fission yeast. The rhp4A-deficient cells but not the rhp4B-deficient cells are sensitive to UV irradiation. However, the disruption of both rhp4A and rhp4B resulted in UV sensitivity that was greater than that of the rhp4A-deficient cells, revealing that Rhp4B plays a role in DNA repair on its own. Fission yeast has two pathways to repair photolesions on DNA, namely, nucleotide excision repair (NER) and UV-damaged DNA endonuclease-dependent excision repair (UVER). Studies with the NER-deficient rad13 and the UVER-deficient (Delta)uvde mutants showed the two rhp4 genes are involved in NER and not UVER. Assessment of the ability of the various mutants to remove cyclobutane pyrimidine dimers (CPDs) from the rbp2 gene locus indicated that Rhp4A is involved in the preferential repair of lesions on the transcribed DNA strand and plays the major role in fission yeast NER. Rhp4B in contrast acts as an accessory protein in non-transcribed strand (NTS) repair.  相似文献   

6.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

7.
8.
9.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells counteracting genetic changes caused by DNA damage. NER removes a wide set of structurally diverse lesions such as pyrimidine dimers arising upon UV irradiation and bulky chemical adducts arising upon exposure to carcinogens or chemotherapeutic drugs. NER defects lead to severe diseases including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the context of a large excess of intact DNA. This review focuses on DNA damage recognition and following stages resulting in preincision complex assembly, the key and still most unclear steps of NER. The major models of primary damage recognition and preincision complex assembly are considered. The contribution of affinity labeling techniques in study of this process is discussed.  相似文献   

10.
ERCC1-XPF, through its role in nucleotide excision repair (NER), is essential for the repair of DNA damage caused by UV light. ERCC1-XPF is also involved in recombinational repair processes distinct from NER. In rodent cells chromosome aberrations are a common consequence of UV irradiation. We have previously shown that ERCC1-deficient cells have a lower ratio of chromatid exchanges to breaks than wild type cells. We have now confirmed this result and have shown that XPF-deficient cells also have a lower ratio than wild type. However, cells deficient in the other NER genes, XPD, XPB and XPG, all have the same ratio of exchanges to breaks as wild type. This implies that ERCC1-XPF, but not other NER proteins, is involved in the formation of UV-induced chromosome aberrations, presumably through the role of ERCC1-XPF in recombinational repair pathways rather than NER. We suggest that ERCC1-XPF may be involved in the bypass/repair of DNA damage in replicating DNA by an exchange mechanism involving single strand annealing between non-homologous chromosomes. This mechanism would rely on the ability of ERCC1-XPF to trim non-homologous 3' tails.  相似文献   

11.
Exposure to solar ultraviolet radiation (UV) is the main etiological factor for skin cancer, including melanoma. Cutaneous pigmentation, particularly eumelanin, afforded by melanocytes is the main photoprotective mechanism, as it prevents UV-induced DNA damage in the epidermis. Therefore, maintaining genomic stability of melanocytes is crucial for prevention of melanoma, as well as keratinocyte-derived basal and squamous cell carcinoma. A critical independent factor for preventing melanoma is DNA repair capacity. The response of melanocytes to UV is mediated mainly by a network of paracrine factors that not only activate melanogenesis, but also DNA repair, anti-oxidant, and survival pathways that are pivotal for maintenance of genomic stability and prevention of malignant transformation or apoptosis. However, little is known about the stress response of melanocytes to UV and the regulation of DNA repair pathways in melanocytes. Unraveling these mechanisms might lead to strategies to prevent melanoma, as well as non-melanoma skin cancer.  相似文献   

12.
The recognition of DNA double-stranded breaks or single-stranded DNA gaps as a precondition for cell cycle checkpoint arrest has been well established. However, how bulky base damage such as UV-induced pyrimidine dimers elicits a checkpoint response has remained elusive. Nucleotide excision repair represents the main pathway for UV dimer removal that results in strand interruptions. However, we demonstrate here that Rad53p hyperphosphorylation, an early event of checkpoint signaling in Saccharomyces cerevisiae, is independent of nucleotide excision repair (NER), even if replication as a source of secondary DNA damage is excluded. Thus, our data hint at primary base damage or at UV damage (primary or secondary) that does not need to be processed by NER as the relevant substrate of damage-sensing checkpoint proteins.  相似文献   

13.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   

14.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

15.
DNA bending by the human damage recognition complex XPC-HR23B   总被引:9,自引:0,他引:9  
Genome integrity is maintained, despite constant assault on DNA, due to the action of a variety of DNA repair pathways. Nucleotide excision repair (NER) protects the genome from the deleterious effects of UV irradiation as well as other agents that induce chemical changes in DNA bases. The mechanistic steps required for eukaryotic NER involve the concerted action of at least six proteins or protein complexes. The specificity to incise only the DNA strand including the damage at defined positions is determined by the coordinated assembly of active protein complexes onto damaged DNA. In order to understand the molecular mechanism of the NER reactions and the origin of this specificity and control we analyzed the architecture of functional NER complexes at nanometer resolution by scanning force microscopy (SFM). In the initial step of damage recognition by XPC-HR23B we observe a protein induced change in DNA conformation. XPC-HR23B induces a bend in DNA upon binding and this is stabilized at the site of damage. We discuss the importance of the XPC-HR23B-induced distortion as an architectural feature that can be exploited for subsequent assembly of an active NER complex.  相似文献   

16.
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to study how a certain set of proteins recognizes DNA lesions in contest of a large excess of intact DNA. The review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. The main models of primary damage recognition and preincision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in light of the available data.  相似文献   

17.
Wu X  Braithwaite E  Wang Z 《Biochemistry》1999,38(9):2628-2635
Excision repair of DNA is an important cellular response to DNA damage induced by radiation and many chemicals. In eukaryotes, base excision repair (BER) and nucleotide excision repair (NER) are two major excision repair pathways which are completed by a DNA ligation step. Using a cell-free system, we have determined the DNA ligase requirement during BER and NER of the yeast S. cerevisiae. Under nonpermissive conditions in extracts of the cdc9-2 temperature-sensitive mutant, DNA ligation in both BER and NER pathways was defective, and the repair patches were enlarged. At the permissive temperature (23 degrees C), DNA ligation during excision repair was only partially functional in the mutant extracts. In contrast, deleting the DNA ligase IV gene did not affect DNA ligation of BER or NER. Defective DNA ligation of BER and NER in cdc9-2 mutant extracts was complemented in vitro by purified yeast Cdc9 protein, but not by DNA ligase IV even when overexpressed. These results demonstrate that the ligation step of excision repair in yeast cell-free extracts is catalyzed specifically by the Cdc9 protein, the homologue of mammalian DNA ligase I.  相似文献   

18.
19.
20.
Thoma F 《The EMBO journal》1999,18(23):6585-6598
Nucleotide excision repair (NER) and DNA repair by photolyase in the presence of light (photoreactivation) are the major pathways to remove UV-induced DNA lesions from the genome, thereby preventing mutagenesis and cell death. Photoreactivation was found in many prokaryotic and eukaryotic organisms, but not in mammals, while NER seems to be universally distributed. Since packaging of eukaryotic DNA in nucleosomes and higher order chromatin structures affects DNA structure and accessibility, damage formation and repair are coupled intimately to structural and dynamic properties of chromatin. Here, I review recent progress in the study of repair of chromatin and transcribed genes. Photoreactivation and NER are discussed as examples of how an individual enzyme and a complex repair pathway, respectively, access DNA lesions in chromatin and how these two repair processes fulfil complementary roles in removal of UV lesions. These repair pathways provide insight into the structural and dynamic properties of chromatin and suggest how other DNA repair processes could work in chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号