首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of an organophosphate source to UMR osteoblastic cultures activates a mineralization program in which BSP localizes to extracellular matrix sites where hydroxyapatite crystals are subsequently nucleated. This study identifies for the first time novel extracellular spherical structures, termed biomineralization foci (BMF), containing bone acidic glycoprotein-75 (BAG-75), bone sialoprotein (BSP), and alkaline phosphatase that are the exclusive sites of initial nucleation of hydroxyapatite crystals in the UMR model. Importantly, in the absence of added phosphate, UMR cultures after reaching confluency contain two size populations of morphologically identifiable BMF precursors enriched in BAG-75 (15-25 and 150-250 microm in diameter). The shape and size of the smaller population are similar to structures assembled in vitro through self-association of purified BAG-75 protein. After organophosphate addition, BSP accumulates within these BAG-75-containing BMF precursors, with hydroxyapatite crystal nucleation occurring subsequently. In summary, BAG-75 is the earliest detectable biomarker that accurately predicts the extracellular sites of de novo biomineralization in UMR cultures. We hypothesize that BAG-75 may perform a key structural role in the assembly of BMF precursors and the recruitment of other proteins such as alkaline phosphatase and BSP. Furthermore, we propose a hypothetical mechanism in which BAG-75 and BSP function actively in nucleation of apatite within BMF.  相似文献   

2.
3.
4.
Sarcocystis neurona merozoites were examined for their ability to invade and divide in bovine turbinate (BT) cell cultures after treatment with cysteine (iodoacetamide), aspartic (pepstatin A), metallo-(1,10-phenanthroline and ethylene glycol-bis(aminoethylether)-tetraacetic acid [EGTA]), or serine (4-[2-aminoethyl]-benzenesulfonyl fluoride hydrochloride [AEBSF], phenylmethane sulphonyl fluoride [PMSF], and tosyl lysyl chloramethyl ketone [TLCK]) protease inhibitors. Significant (P < 0.01) inhibition of serine protease activity by PMSF and TLCK led to a reduction of 86 and 78% in merozoites produced in BT cell cultures, respectively, whereas AEBSF (1 mM) led to a 68% reduction in merozoites produced in BT cell cultures and a reduction of 84 and 92% at higher AEBSF concentrations (2 and 3 mM, respectively). Pepstatin A and iodoacetamide failed to cause any inhibition in merozoite production, whereas 1,10-phenanthroline and EGTA caused slight, but not significant, inhibition at 6 and 17%, respectively. In zymograms, 2 bands of protease activity between 65- and 70-kDa molecular weight were seen. The protease activity was inhibited by AEBSF but not by E-64 (cysteine protease inhibitor), EGTA, iodoacetamide, or pepstatin A. In native zymograms, the protease activity was highest between a pH range of 8 and 10. These data suggest that merozoites of S. neurona have serine protease activity with a relative molecular weight range between 65 and 70 kDa and optimal pH range between 8 and 10, which is essential for host cell entry at least in vitro. The protease activity described here could be a potential target for chemotherapy development.  相似文献   

5.
6.
Dexamethasone is capable of directing osteoblastic differentiation of bone marrow stromal cells (BMSCs) in vitro, but its effects are not lineage-specific, and sustained exposure has been shown to down-regulate collagen synthesis and induce maturation of an adipocyte subpopulation within BMSC cultures. Such side effects might be reduced if dexamethasone is applied in a regimented manner, but the discrete steps in osteoblastic maturation that are stimulated by dexamethasone are not known. To examine this, dexamethasone was added to medium to initiate differentiation of rat BMSCs cultures and then removed after a varying number of days. Cell layers were analyzed for cell number, rate of collagen synthesis, expression of osteocalcin (OC), bone sialoprotein (BSP) and lipoprotein lipase (LpL), and matrix mineralization. Withdrawal of dexamethasone at 3 and 10 days was found to enhance cell number relative to continuous exposure, but did not affect to decrease collagen synthesis slightly. Late markers of osteoblastic differentiation, BSP expression and matrix mineralization, were also sensitive to dexamethasone and increased systematically with exposure while LpL systematically decreased. These results indicate that dexamethasone acts at both early and late stages to direct proliferative osteoprogenitor cells toward terminal maturation.  相似文献   

7.
Bone sialoprotein (BSP) and osteopontin (OPN) are sulphated and phosphorylated sialoglycoproteins that regulate the formation of hydroxyapatite crystals during de novo bone formation. To gain insights into the relationship between the synthesis and posttranslational modification of BSP and OPN and the mineralization of bone, pulse-chase studies were conducted on cultures of newly forming bone nodules produced by fetal rat calvarial cells in vitro. Cultures were pulse labelled with 35SO4, or with either 32PO4 or [gamma-32P]ATP to study intracellular and extracellular phosphorylation, respectively, and chased in isotope-free medium for various times up to 24 h. The presence of radiolabelled BSP and OPN was determined in the cells, in culture medium, and in various tissue compartments obtained by dissociative extraction with 4 M GuHCl (G1), 0.5 M EDTA (E), and again with 4 M GuHCl (G2) and a bacterial collagenase digestion of the demineralized collagenous tissue residue. With each isotope employed, radiolabelled BSP and OPN were detected in the E extract within the 1-h chase period and increased in amount with time. Similarly, 35SO4- and 32PO4-labelled BSP increased in the G2 extract, but OPN was not detected. In the G1 extract the 35SO4-labelled BSP decreased with chase time, whereas the 32PO4-labelled BSP increased. No differences were evident in the profiles of BSP labelled with 32PO4 or [gamma-32P]ATP. In the absence of beta-glycerophosphate, which is required for optimal mineralization of the bone nodules, 35SO4-labelled BSP was increased in the medium and G1 extract and decreased in the E extract and G2 extract after 3 h. In addition to differences in the tissue compartmentalization of BSP and OPN, these studies indicate that 35SO4 is lost from BSP during mineralization and that isoforms of BSP exist with a selective affinity for the organic and mineral phases. Moreover, the additional phosphorylation of BSP and OPN catalyzed by ectokinase activity does not appear to alter the distribution of these sialoproteins.  相似文献   

8.
The orphan nuclear receptor estrogen-related receptor-α (ERRα) has been reported to have both a positive and a negative regulatory role in osteoblastic and adipocytic differentiation. We have studied the role of ERRα in osteoblastic and adipogenic differentiation of mesenchymal stem cells. Bone marrow mesenchymal stem cells were isolated from ERRα deficient mice and their differentiation capacities were compared to that of the wild-type cells. ERRα deficient cultures displayed reduced cellular proliferation, osteoblastic differentiation, and mineralization. In the complementary experiment, overexpression of ERRα in MC3T3-E1 cells increased the expression of osteoblastic markers and mineralization. Alterations in the expression of bone sialoprotein (BSP) may at least partially explain the effects on mineralization as BSP expression was reduced in ERRα deficient MSCs and enhanced upon ERRα overexpression in MC3T3-E1 cells. Furthermore, a luciferase reporter construct driven by the BSP promoter was efficiently transactivated by ERRα. Under adipogenic conditions, ERRα deficient cultures displayed reduced adipocytic differentiation. Our data thus propose a positive role for ERRα in osteoblastic and adipocytic differentiation. The variability in the results yielded in the different studies implies that ERRα may play different roles in bone under different physiological conditions.  相似文献   

9.
Monoclonal antibody HTP IV-#1 specifically recognizes a complexation-dependent neoepitope on bone acidic glycoprotein-75 (BAG-75) and a Mr = 50 kDa fragment. Complexes of BAG-75 exist in situ, as shown by immunofluorescent staining of the primary spongiosa of rat tibial metaphysis and osteosarcoma cell micromass cultures with monoclonal antibody HTP IV-#1. Incorporation of BAG-75 into complexes by newborn growth plate and calvarial tissues was confirmed with a second, anti-BAG-75 peptide antibody (#503). Newly synthesized BAG-75 immunoprecipitated from mineralizing explant cultures of bone was present entirely in large macromolecular complexes, while immunoprecipitates from monolayer cultures of osteoblastic cells were previously shown to contain only monomeric Mr = 75 kDa BAG-75 and a 50 kDa fragment. Purified BAG-75 self-associated in vitro to form large spherical aggregate structures composed of a meshwork of 10 nm diameter fibrils. These structures have the capacity to sequester large amounts of phosphate ions as evidenced by X-ray microanalysis and by the fact that purified BAG-75 preparations, even after extensive dialysis against water, retained phosphate ions in concentrations more than 1,000-fold higher than can be accounted for by exchange calculations or by electrostatic binding. The ultrastructural distribution of immunogold-labeled BAG-75 in the primary spongiosa underlying the rat growth plate is distinct from that for other acidic phosphoproteins, osteopontin and bone sialoprotein. We conclude that BAG-75 self-associates in vitro and in vivo into microfibrillar complexes which are specifically recognized by monoclonal antibody HTP IV-#1. This propensity to self-associate into macromolecular complexes is not shared with acidic phosphoproteins osteopontin and bone sialoprotein. We hypothesize that an extracellular electronegative network of macromolecular BAG-75 complexes could serve an organizational role in forming bone or as a barrier restricting local diffusion of phosphate ions. J. Cell. Biochem. 64:547–564. © 1997 Wiley-Liss, Inc.  相似文献   

10.
While conducting a purification protocol of phospholipase D (PLD) from human granulocytes, we observed that PLD activity was inhibited by a commonly-used protease inhibitor cocktail. Of the six inhibitors present in the cocktail, the serine protease inhibitor, 4-(2-aminoethyl)-benezensulfonyl fluoride (AEBSF), was found to be the sole inhibitor of PLD. AEBSF caused a loss of neutrophil and purified plant PLD activities in vitro, but not in intact cells at the concentrations used, nor did it affect the related phospholipases A(2) and C, that were utilized as specificity controls. The compound AEBSNH(2), which has the fluoride replaced by an -NH(2) group, failed to affect PLD activity as did other compounds structurally related to AEBSF with known protease inhibitory capabilities. Finally, basal- and agonist-stimulated PLD activity was inhibited in phosphatidylcholine-specific anti-PLD immunoprecipitates (IC(50) = 75 microM). These results suggest that AEBSF, in an effect probably unrelated to its anti-proteolytic ability, directly interferes with PLD enzymatic activity, making it a significant compound to begin analyzing the role of PLD in mammalian cell signaling.  相似文献   

11.
12.
Mineralization occurred both in fetal rat calvarial cells and UMR 106 osteoblastic cells when they were cultured in medium containing L-ascorbate and β-glycerophosphate as evidenced by von Kóssa staining as well as deposition of calcium ions and inorganic phosphate in the cells. When compared with corresponding non-mineralized cell cultures, both the mineralized cultures of calvarial cells and UMR 106 cells did not exhibit any change in intracellular bone-specific alkaline phosphatase activities which were measured by wheatgerm lectin precipitation method. Our results support the hypothesis that mineralization may not exert any direct negative feedback on matrix protein synthesis in osteoblasts during bone formation.  相似文献   

13.
The rat osteosarcoma cell line (UMR 106-01) synthesizes and secretes relatively large amounts of a sulfated glycoprotein into its culture medium (approximately 240 ng/10(6) cells/day). This glycoprotein was purified, and amino-terminal sequence analysis identified it as bone sialoprotein (BSP). [35S]Sulfate, [3H]glucosamine, and [3H]tyrosine were used as metabolic precursors to label the BSP. Sulfate esters were found on N- and O-linked oligosaccharides and on tyrosine residues, with about half of the total tyrosines in the BSP being sulfated. The proportion of 35S activity in tyrosine-O-sulfate (approximately 70%) was greater than that in N-linked (approximately 20%) and O-linked (approximately 10%) oligosaccharides. From the deduced amino acid sequence for rat BSP (Oldberg, A., Franzén, A., and Heineg?rd, D. (1988) J. Biol. Chem. 263, 19430-19432), the results indicate that on average approximately 12 tyrosine residues, approximately 3 N-linked, and approximately 2 O-linked oligosaccharides are sulfated/molecule. The carboxyl-terminal quarter of the BSP probably contains most, if not all, of the sulfated tyrosine residues because this region of the polypeptide contains the necessary requirements for tyrosine sulfation. Oligosaccharide analyses indicated that for every N-linked oligosaccharide on the BSP, there are also approximately 2 hexa-, approximately 5 tetra-, and approximately 2 trisaccharides O-linked to serine and threonine residues. On average, the BSP synthesized by UMR 106-01 cells would contain a total of approximately 3 N-linked and approximately 25 of the above O-linked oligosaccharides. This large number of oligosaccharides is in agreement with the known carbohydrate content (approximately 50%) of the BSP.  相似文献   

14.

Background

Monocytes can be primed in vitro by lipopolysaccharide (LPS) for release of cytokines, for enhanced killing of cancer cells, and for enhanced release of microbicidal oxygen radicals like superoxide and peroxide. We investigated the proteins involved in regulating priming, using 2D gel proteomics.

Results

Monocytes from 4 normal donors were cultured for 16 h in chemically defined medium in Teflon bags ± LPS and ± 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), a serine protease inhibitor. LPS-primed monocytes released inflammatory cytokines, and produced increased amounts of superoxide. AEBSF blocked priming for enhanced superoxide, but did not affect cytokine release, showing that AEBSF was not toxic. After staining large-format 2D gels with Sypro ruby, we compared the monocyte proteome under the four conditions for each donor. We found 30 protein spots that differed significantly in response to LPS or AEBSF, and these proteins were identified by ion trap mass spectrometry.

Conclusion

We identified 19 separate proteins that changed in response to LPS or AEBSF, including ATP synthase, coagulation factor XIII, ferritin, coronin, HN ribonuclear proteins, integrin alpha IIb, pyruvate kinase, ras suppressor protein, superoxide dismutase, transketolase, tropomyosin, vimentin, and others. Interestingly, in response to LPS, precursor proteins for interleukin-1β appeared; and in response to AEBSF, there was an increase in elastase inhibitor. The increase in elastase inhibitor provides support for our hypothesis that priming requires an endogenous serine protease.  相似文献   

15.
Bone sialoprotein (BSP) is an anionic phosphorylated glycoprotein that is expressed almost exclusively in mineralized tissues and has been shown to be a potent nucleator of hydroxyapatite formation. The binding of BSP to collagen is thought to be important for the initiation of bone mineralization and in the adhesion of bone cells to the mineralized matrix. Using a solid phase assay, we have investigated the interaction between BSP and collagen. Initial studies showed that raising the ionic strength, decreasing the pH below 7, or introducing divalent cations diminishes but does not abolish the binding of BSP to collagen, indicating that the interaction is only partly electrostatic in nature. Both bone-extracted and recombinant (r)BSP exhibited similar binding affinities, indicating that post-translational modifications are not critical for binding. To identify the collagen-binding domain, recombinant peptides of BSP were studied. Peptide rBSP-(1-100) binds to type I collagen with an affinity similar to that of full-length rBSP, whereas peptides containing the sequences 99-201 or 200-301 do not bind. Further studies showed that rBSP-(1-75) competitively inhibits the binding of rBSP-(1-100), whereas rBSP-(21-100) inhibits binding to a lesser extent, and rBSP-(43-100) does not inhibit binding. These results suggest that the collagen-binding site of rat BSP is within the sequence 21-42, with residues N-terminal of this region likely also involved. This site was confirmed by the demonstration of collagen-binding activity of a synthetic peptide corresponding to residues 19-46. The collagen-binding domain, which is highly conserved among species, is enriched in hydrophobic residues and lacks acidic residues. We conclude that residues 19-46 of BSP represent a novel collagen-binding site.  相似文献   

16.
An osteoblastic, established cell line UMR-106 was shown to synthesize high levels of the bone-specific, bone sialoprotein (BSP). BSP could be radiolabelled to high specific activity by adding 3H-glucosamine and 35S-sulfate to the UMR-106 cultures and was isolated to high purity using ion-exchange and affinity chromatography on immobilized serotonin. The radiolabelled BSP, partially purified by ion-exchange chromatography, was injected intravenously into a rat in order to study its tissue distribution and urinary clearance. About 43% of the total recovered radioactivity was excreted in the urine within 75 h and the remainder was widely distributed, with the liver, kidney, heart and pelt showing the highest concentrations. The use of established cell lines for the synthesis of radiolabelled glycoconjugates, in conjunction with rapid purification on affinity matrix, provides a useful approach for studying the metabolism of glycoconjugates in whole animals.  相似文献   

17.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

18.
Caspases are considered to be the key effector proteases of apoptosis. Initiator caspases cleave and activate downstream executioner caspases, which are responsible for the degradation of numerous cellular substrates. We studied the role of caspases in apoptotic cell death of a human melanoma cell line. Surprisingly, the pancaspase inhibitor zVAD-fmk was unable to block cleavage of poly(ADP-ribose) polymerase (PARP) after treatment with etoposide, while it did prevent DEVDase activity. It is highly unlikely that caspase-2, which is a relatively zVAD-fmk-resistant caspase, is mediating etoposide-induced PARP cleavage, as a preferred inhibitor of this caspase could not prevent cleavage. In contrast, caspase activation and PARP degradation were blocked by pretreatment of the cells with the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). We therefore conclude that a serine protease regulates an alternative initiation mechanism that leads to caspase activation and PARP cleavage. More importantly, while zVAD-fmk could not rescue melanoma cells from etoposide-induced death, the combination with AEBSF resulted in substantial protection. This indicates that this novel pathway fulfills a critical role in the execution of etoposide-induced programmed cell death.  相似文献   

19.
20.
Osteopontin (OP) is a highly phosphorylated bone matrix protein and contains the RGD cell-binding motif, which mediates cell adhesion through integrin receptors that include αvβ3. Casein kinase 2 (CK2) is a factor-independent serine/threonine kinase, which may be the predominant physiologically relevant kinase for OP phosphorylation. This study was designed to examine the effects of unphosphorylated recombinant rat OP, and CK2-phosphorylated OP (P-OP), on the adhesion and function of mouse osteoclasts (OC) and osteoblast-like cells (UMR 201-10B and UMR 106-06) in vitro. OP significantly increased OC adhesion compared to plastic alone, and cell attachment was further increased at least twofold on OP phosphorylated with CK2. Attachment was dependent on the integrity of the RGD domain and was completely abolished in the presence of 1 mM RGD peptide. Neither CK2 phosphorylation of mutant OP, in which the RGD was converted to RGE or RAD, nor protein kinase C (PKC) phosphorylation of wild-type OP enhanced OC attachment. An antibody to the β3 integrin subunit, but not anti-mouse CD44 antibody, specifically blocked the proportion of attachment due to phosphorylation of OP. Actin ring formation in OC was increased by plating cells onto OP, with no further increase by phosphorylation. Both OP and CK2-phosphorylated OP enhanced attachment of the two osteoblastic cell lines, compared to plastic, but in contrast to OCs, there was no significant difference with phosphorylation. Osteoblast attachment was totally blocked by 1 mM RGD peptide, but was not influenced by the β3 integrin antibody. Plating of UMR 201-10B cells onto OP further increased retinoic acid-induced alkaline phosphatase expression. The results suggest that specific phosphorylation of OP is important for interaction with OCs, compared with osteoblastic cells, and that alternative integrins may be important in the interaction between osteoblastic cells and OP compared with OCs. J. Cell. Physiol. 176:179–187, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号