首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
E Rubin  G Lithwick  A A Levy 《Genetics》2001,158(3):949-957
The maize transposon Activator (Ac) was the first mobile DNA element to be discovered. Since then, other elements were found that share similarity to Ac, suggesting that it belongs to a transposon superfamily named hAT after hobo from Drosophila, Ac from maize, and Tam3 from snapdragon. We addressed the structure and evolution of hAT elements by developing new tools for transposon mining and searching the public sequence databases for the hallmarks of hAT elements, namely the transposase and short terminal inverted repeats (TIRs) flanked by 8-bp host duplications. We found 147 hAT-related sequences in plants, animals, and fungi. Six conserved blocks could be identified in the transposase of most hAT elements. A total of 41 hAT sequences were flanked by TIRs and 8-bp host duplications and, out of these, 34 sequences had TIRs similar to the consensus determined in this work, suggesting that they are active or recently active transposons. Phylogenetic analysis and clustering of hAT sequences suggest that the hAT superfamily is very ancient, probably predating the plant-fungi-animal separation, and that, unlike previously proposed, there is no evidence that horizontal gene transfer was involved in the evolution of hAT elements.  相似文献   

2.
Genome-wide analyses of repetitive DNA suggest a significant impact particularly of transposable elements on genome size and evolution of virtually all eukaryotic organisms. In this study, we analyzed the abundance and diversity of the hAT transposon superfamily of the sugar beet (B. vulgaris) genome, using molecular, bioinformatic and cytogenetic approaches. We identified 81 transposase-coding sequences, three of which are part of structurally intact but nonfunctional hAT transposons (BvhAT), in a B. vulgaris BAC library as well as in whole genome sequencing-derived data sets. Additionally, 116 complete and 497 truncated non-autonomous BvhAT derivatives lacking the transposase gene were in silico-detected. The 116 complete derivatives were subdivided into four BvhATpin groups each characterized by a distinct terminal inverted repeat motif. Both BvhAT and BvhATpin transposons are specific for species of the genus Beta and closely related species, showing a localization on B. vulgaris chromosomes predominantely in euchromatic regions. The lack of any BvhAT transposase function together with the high degree of degeneration observed for the BvhAT and the BvhATpin genomic fraction contrasts with the abundance and activity of autonomous and non-autonomous hAT transposons revealed in other plant species. This indicates a possible genus-specific structural and functional repression of the hAT transposon superfamily during Beta diversification and evolution.  相似文献   

3.
Xu Z  Dooner HK 《The Plant cell》2005,17(2):375-388
More than half a century after the discovery of transposable elements, the number of genetically defined autonomous elements that have been isolated and characterized molecularly in any one species remains surprisingly small. Because of its rich genetic history, maize (Zea mays) is, by far, the plant with the largest number of such elements. Yet, even in maize, a maximum of only two autonomous elements have been characterized in any transposon superfamily. This article describes the isolation and molecular and genetic characterization of Mx (for mobile element induced by x-rays), a third autonomous member of the hAT transposon superfamily in maize. Mx is 3731 bp long, ends in 13-bp terminal inverted repeats (TIRs), and causes an 8-bp duplication of the target site. Mx and rMx (for responder to Mx), its 571-bp nonautonomous partner, define a classical family of interacting transposable elements. Surprisingly, the TIRs of Mx and rMx are only 73% identical, and the subterminal sequences are even less so, suggesting that Mx and rMx may represent diverging transposable elements still capable of mobilization by the same transposase. Sequences that are closer to the ends of either Mx or rMx are present in the maize genome. Mx is predicted to encode a 674-amino acid protein that is homologous to the Ac transposase. Although Mx and Ac are closely related, they do not interact. Other data suggest that maize may possess at least five families of hAT transposons that do not interact with each other. The possible origin of noninteracting transposon families within the same superfamily is discussed.  相似文献   

4.
While characterized mutable alleles caused by DNA transposons have been abundant in maize since the discovery of Dissociation conferring variegation by Barbara McClintock, only a few mutable alleles have been described in rice even though the rice genome contains various transposons. Here, we show that a spontaneous mutable virescent allele, pyl-v, is caused by the disruption of the nuclear-coded essential chloroplast protease gene, OsClpP5, due to insertion of a 607-bp non-autonomous DNA transposon, non-autonomous DNA-based active rice transposon one (nDart1), belonging to the hAT superfamily. The transposition of nDart1 can be induced by crossing with a line containing an autonomous element, aDart, and stabilized by segregating out of aDart. We also identified a novel mutable dwarf allele thl-m caused by an insertion of nDart1. The japonica cultivar Nipponbare carries no aDart, although it contains epigenetically silenced Dart element(s), which can be activated by 5-azacytidine. Nipponbare bears four subgroups of about 3.6-kb Dart-like sequences, three of which contain potential transposase genes, and around 3.6-kb elements without an apparent transposase gene, as well as three subgroups of about 0.6-kb nDart1-related elements that are all internal deletions of the Dart-like sequences. Both nDart1 and 3.6-kb Dart-like elements were also present in indica varieties 93-11 and Kasalath. nDart1 appears to be the most active mutagen among nDart1-related elements contributing to generating natural variations. A candidate for an autonomous element, aDart, and a possible application of nDart1 for transposon tagging are discussed.  相似文献   

5.
The Tc1/mariner superfamily is one of the most widely distributed among the DNA transposons in both terrestrial and aquatic organisms. We studied the abundance of the Tc1/mariner elements in the genome of the gastropod Littorina saxatilis Olivi, 1792 (Gastropoda: Littorinimorpha). For this purpose, nucleotide sequences with a total length of 358877 bp were analyzed. Six sequences were found to be similar to the Tc1/mariner DNA transposons. These sequences were studied for structure, the presence of functional transposase, and the systematic position within the superfamily. In addition, the loci with high homology to the DNA transposons of the hAT, Sola, Ginger, EnSpm/CACTA, ISL2EU, Kolobok, Novosib, Zisupton, and Helitron superfamilies were identified.  相似文献   

6.
Transposable elements are widespread mobile DNA sequences able to integrate into new locations within genomes. Through transposition and recombination, they significantly contribute to genome plasticity and evolution. They can also regulate gene expression and provide regulatory and coding sequences (CDSs) for the evolution of novel gene functions. We have identified a new superfamily of DNA transposon on the Y chromosome of the platyfish Xiphophorus maculatus. This element is 11 kb in length and carries a single CDS of 24 exons. The N-terminal part of the putative protein, which is expressed in all adult tissues tested, contains several nucleic acid- and protein-binding domains and might correspond to a novel type of transposase/integrase not described so far in any transposon. In addition, a testis-specific splice isoform encodes a C-terminal Ulp1 SUMO protease domain, suggesting a function in posttranslational protein modification mediated by SUMO and/or ubiquitin small peptides. Accordingly, this element was called Zisupton, for Zinc finger SUMO protease transposon. Beside the Y-chromosomal sequence, five other very similar copies were identified in the platyfish genome. All copies are delimited by 99-bp conserved subterminal inverted repeats and flanked by copy-specific 8-nt target site duplications reflecting their integration at different positions in the genome. Zisupton elements are inserted at different genomic locations in different poeciliid species but also in different populations of X. maculatus. Such insertion polymorphisms between related species and populations indicate relatively recent transposition activity, with a high degree of nucleotide identity between species suggesting possible implication of horizontal gene transfer. Zisupton sequences were detected in other fish species, in urochordates, cephalochordates, and hemichordates as well as in more distant organisms, such as basidiomycete fungi, filamentous brown algae, and green algae. Possible examples of nuclear genes derived from Zisupton have been identified. To conclude, our analysis has uncovered a new superfamily of DNA transposons with potential roles in genome diversity and evolutionary innovation in fish and other organisms.  相似文献   

7.
We characterized an insertion mutant of the baculovirus Cydia pomonella granulovirus (CpGV), which contained a transposable element of 3.2 kb. This transposon, termed TCp3.2, has unusually long inverted terminal repeats (ITRs) of 756 bp and encodes a defective gene for a putative transposase. Amino acid sequence comparison of the defective transposase gene revealed a distant relationship to a putative transposon in Caenorhabditis elegans which also shares some similarity of the ITRs. Maximum parsimony analysis of the predicted amino acid sequences of Tc1- and mariner-like transposases available from the GenBank data base grouped TCp3.2 within the superfamily of Tc1-like transposons. DNA hybridization indicated that TCp3.2 originated from the genome of Cydia pomonella, which is the natural host of CpGV, and is present in less than 10 copies in the C. pomonella genome. The transposon TCp3.2 most likely was inserted into the viral genome during infection of host larvae. TCp3.2 and the recently characterized Tc1-like transposon TC14.7 (Jehle et al. 1995), which was also found in a CpGV mutant, represent a new family of transposons found in baculovirus genomes. The occasional horizontal escape of different types of host transposons into baculovirus genomes evokes the question about the possible role of baculoviruses as an interspecies vector in the horizontal transmission of insect transposons. Received: 27 February 1997 / Accepted: 16 May 1997  相似文献   

8.
9.
Several new families of DNA transposons were identified by computer-assisted searches in a wide range of animal species that includes nematodes, flat worms, mosquitoes, sea squirt, zebrafish, and humans. Many of these elements have coding capacity for transposases, which are related to each other and to those encoded by the IS1016 group of bacterial insertion sequences. Although these transposases display a motif similar to the DDE motif found in many transposases and integrases, they cannot be directly allied to any of the previously described eukaryotic transposases. Other common features of the new eukaryotic and bacterial transposons include similarities in their terminal inverted repeats and 8-bp or 9-bp target-site duplications. Together, these data indicate that these elements belong to a new superfamily of DNA transposons, called Merlin/IS1016, which is common in many eubacterial and animal genomes. We also present evidence that these transposons have been recently active in several animal species. This evidence is particularly strong in the parasitic blood fluke Schistosoma mansoni, in which Merlin is also the first described DNA transposon family.  相似文献   

10.

Background

We identify DNA transposons from the completed draft genome sequence of Daphnia pulex, a cyclically parthenogenetic, aquatic microcrustacean of the class Branchiopoda. In addition, we experimentally quantify the abundance of six DNA transposon families in mutation-accumulation lines in which sex is either promoted or prohibited in order to better understand the role of recombination in transposon proliferation.

Results

We identified 55 families belonging to 10 of the known superfamilies of DNA transposons in the genome of D. pulex. DNA transposons constitute approximately 0.7% of the genome. We characterized each family and, in many cases, identified elements capable of activity in the genome. Based on assays of six putatively active element families in mutation-accumulation lines, we compared DNA transposon abundance in lines where sex was either promoted or prohibited. We find the major difference in abundance in sexuals relative to asexuals in lab-reared lines is explained by independent assortment of heterozygotes in lineages where sex has occurred.

Conclusions

Our examination of the duality of sex as a mechanism for both the spread and elimination of DNA transposons in the genome reveals that independent assortment of chromosomes leads to significant copy loss in lineages undergoing sex. Although this advantage may offset the so-called 'two fold cost of sex' in the short-term, if insertions become homozygous at specific loci due to recombination, the advantage of sex may be decreased over long time periods. Given these results, we discuss the potential effects of sex on the dynamics of DNA transposons in natural populations of D. pulex.  相似文献   

11.
Transposons are ubiquitous mobile genetic elements found in all eu- and prokaryotic cells. The first transposon identified, the maize Activator element, belongs to the hAT family. hAT transposons have been identified in most eukaryotic lineages, including plants, fungi, animals and even man. The basic structural and functional features of this transposon family and its phylogenetic roots are discussed in detail, including a phylogenetic tree deduced from the amino acid sequence of the most conserved part of the transposon-encoded transposase. Emphasis is given to the use of hAT transposons as tools for gene tagging and insect transformation as well as to their biological function, i.e. are they selfish DNA, beneficial companions, or even both?  相似文献   

12.
金鱼hAT家族转座子Tgf2的克隆及其结构   总被引:2,自引:0,他引:2  
Zou SM  Du XD  Yuan J  Jiang XY 《遗传》2010,32(12):1263-1268
hAT家族转座子以果蝇hobo、玉米Ac和金鱼草(Ceratophyllum demersum L.)Tam3为代表,以"剪切-粘帖"方式进行DNA转座。1996年,日本学者首次在白化青鳉(Oryzias latipes)中发现具有天然活性的脊椎动物hAT家族转座子,即青鳉Tol2转座子,该转座子已在模式生物斑马鱼转基因、基因和启动子捕获方面进行了广泛应用。文章根据玉米Ac与青鳉Tol2转座子序列保守区设计一对引物,在19种不同鱼类物种或品系中进行PCR筛选,最后发现此类hAT家族转座子在我国不同品系金鱼中存在,命名为金鱼Tgf2转座子。金鱼Tgf2转座子全长4720bp,由4个阅读框组成,与青鳉Tol2转座子的相似度为97%。金鱼Tgf2与青鳉Tol2转座子在末端倒位重复和亚末端重复上存在一定差异,此外,金鱼Tgf2转座子的中间反向重复序列(1453bp到2091bp)可形成一种"十"字结构,明显有别于青鳉Tol2转座子形成的茎环结构,这些区域与转座活性密切相关。文章预示金鱼Tgf2转座子可能具有更高的天然转座活性,构建高效金鱼Tgf2转基因元件可供鱼类转基因和基因捕获研究。  相似文献   

13.
水稻转座子研究进展   总被引:1,自引:1,他引:0  
转座子是植物基因组的重要组成部分, 对于研究植物基因组进化等具有重要意义。随着水稻全基因组测序计划的开展和完成, 水稻转座子研究取得了极大进展, 目前已经在水稻基因组中发现了几乎所有类型的转座子, 约占水稻基因组的35%。在正常情况下, 大多数水稻转座子不具有转座活性, 但是在特定的条件下(如组织培养或辐射等), 水稻基因组中沉默的转座子可以被激活, 从而可能导致插入突变并影响基因的表达。在水稻中已鉴定出6个有活性的转座子, 其中Tos17已被应用到水稻功能基因组研究中。转座子序列的新的分子标记转座子展示(transposon display, TD)现已被开发, 并在水稻遗传作图和遗传分化研究中得到应用  相似文献   

14.
Moon S  Jung KH  Lee DE  Jiang WZ  Koh HJ  Heu MH  Lee DS  Suh HS  An G 《Plant & cell physiology》2006,47(11):1473-1483
Recent completion of the sequencing of the rice genome has revealed that it contains >40% repetitive sequences, most of which are related to inactive transposable elements. During the molecular analysis of the floral organ number 1/multiple pistil 2 (fon1/mp2) mutant, we identified an active transposable element dTok0 that was inserted at the kinase domain of FON1, a homolog of CLAVATA1. Insertion of the element into FON1 generated an 8 bp duplication of its target sites, which is one of the major characteristics of the hAT family of transposons. The dTok0 element was actively transposed out of the FON1 gene, leaving 5-8 bp footprints. Reinsertion into a new location was observed at a low frequency. Analysis of the genome sequence showed that the rice cultivar 'Nipponbare' contains 25 copies of dTok elements; similar numbers were present in all the Oryza species examined. Because dTok0 does not encode a transposase, enzyme activity should be provided in trans. We identified a putative autonomous transposon, Tok1 that contains an intact open reading frame of the Ac-like transposase.  相似文献   

15.
Ciliated protists rearrange their genomes dramatically during nuclear development via chromosome fragmentation and DNA deletion to produce a trimmer and highly reorganized somatic genome. The deleted portion of the genome includes potentially active transposons or transposon-like sequences that reside in the germline. Three independent studies recently showed that transposase proteins of the DDE/DDD superfamily are indispensible for DNA processing in three distantly related ciliates. In the spirotrich Oxytricha trifallax, high copy-number germline-limited transposons mediate their own excision from the somatic genome but also contribute to programmed genome rearrangement through a remarkable transposon mutualism with the host. By contrast, the genomes of two oligohymenophorean ciliates, Tetrahymena thermophila and Paramecium tetraurelia, encode homologous PiggyBac-like transposases as single-copy genes in both their germline and somatic genomes. These domesticated transposases are essential for deletion of thousands of different internal sequences in these species. This review contrasts the events underlying somatic genome reduction in three different ciliates and considers their evolutionary origins and the relationships among their distinct mechanisms for genome remodeling.  相似文献   

16.
Transposable elements make up a significant fraction of many eukaryotic genomes. Although both classes of transposable elements, the DNA transposons and the retrotransposons, show substantial expansion in plants and invertebrates, the DNA transposons are thought to have become inactive in mammalian genomes long ago. Here, we report the first evidence for recent activity of DNA transposons in a mammalian lineage, the bat genus Myotis. Six recently active families of nonautonomous hobo/Activator/TAM transposons were identified in the Myotis lucifugus genome using computational tools. Low sequence divergence among the individual sequences and between individual sequences and their respective consensus sequences suggest their recent expansion in the M. lucifugus genome. Furthermore, amplification and sequencing of polymorphic insertion loci in a related taxon, M. austroriparius, confirms their recent activity. Myotis is one of the largest mammalian genera with 103 species. The discovery of DNA transposon activity in this genus may therefore influence our understanding of genome evolution and diversification in bats and in mammals in general. Furthermore, the identification of a likely autonomous element may lead to new approaches for mammalian genetic manipulation.  相似文献   

17.
18.
Recent studies of the LTR-retrotransposons of Schizosaccharomyces pombe have shed considerable light on their evolution and function. The sequencing of the S. pombe genome allowed analysis of its transposon content. This analysis provides information about the maintenance and loss of transposons in the genome. The results of transposition assays and biochemical analyses demonstrate that the N-terminal protein of Tf1 is functionally equivalent to the Gag proteins of retroviruses and retrotransposons. Despite this conservation of function, the N-terminal protein of Tf1 lacks any sequence similarity to other known Gag proteins. Sequence analysis and experimental data also indicate that the Tf1 transposons of S. pombe target their integration into specific sites in the host genome. Transposition events resulting from the expression of Tf1 reveal a strong preference for intergenic regions, specifically at pol II promoters in a window 100-400 bp upstream of open reading frames. The complete and partial copies of Tf transposons in the sequenced genome of S. pombe show the same association of integration with promoter regions. This body of work explores how the transposon interacts with the host, the balance between the transposons propagation and loss, and how different families of transposons evolve.  相似文献   

19.
转座子Sleeping Beauty和PiggyBac   总被引:2,自引:0,他引:2  
近10年来,得益于转座子Sleeping Beauty(SB)和PiggyBac(PB)的发现和完善,转座子作为一种遗传工程工具在脊椎动物的基因遗传研究中得到广泛应用.SB和PB宿主范围极其广泛,从单细胞生物到哺乳动物都能够发挥作用.转座过程需要转座序列和转座酶的存在,类似于"剪切"、"粘贴"的方式.转座子载体系统转座时可携带一段外源DNA序列,利用这一特性可以用于实现目的基因的转移,现已广泛用于转基因动物、基因功能研究、基因治疗等领域.当转座系统与基因捕获技术相结合,不仅可研究插入突变基因的功能,还能通过所携带的报告基因获得捕获基因的表达图谱.作为非病毒载体的SB和PB转座系统,由于具有高容量、高效率和高安全性等优势,并且PB在转座后不留任何足迹,不会造成遗传物质的不可预测改变,在动物基因工程以及基因治疗方面具有诱人的前景.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号