首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the current study was to elucidate the underlying central mechanism(s) of the cardiovascular effects evoked by centrally injected melittin and arachidonic acid (AA) in hemorrhaged hypotensive condition, specifically, from central AA release from the cell membrane under the influence of phospholipase A2 (PLA2) to central thromboxane A2 (TXA2) signaling via the cyclooxygenase (COX) pathway. As the main control of the study, melittin (3 μg) or AA (150 μg) was injected intracerebroventricularly (i.c.v.) after the hemorrhage procedure, which was performed by withdrawing a total volume of 2.2 ml of blood/100 g body weight over a period of 10 min. Both treatments generated a pressor response and abolished the hypotension-induced hemorrhage. Pretreatment with the PLA2 inhibitor mepacrine (500 μg; i.c.v.) completely blocked the pressor response to melittin in the hemorrhagic hypotensive state. Pretreatments with the nonselective COX inhibitor indomethacin (200 μg; i.c.v.) or the TXA2 synthesis inhibitor furegrelate (250 or 500 μg; i.c.v.) were made to test the role of central COX activity and, subsequently, the TXA2 signaling pathway in the melittin- or AA-mediated reversal of hemorrhagic hypotension. Indomethacin completely prevented the pressor response to melittin and AA in the hemorrhaged, hypotensive state, but furegrelate did so only partially.In conclusion, these findings suggest that central COX activity and, subsequently, the central TXA2 signaling pathway, are, at least in part, involved in the melittin- or AA-induced reversal effect during hemorrhagic shock.  相似文献   

2.
We reported that the endothelial dysfunction that develops with age was associated with a proinflammatory phenotype. In this study, we hypothesized that an increased production of proinflammatory cyclooxygenase (COX) products occurs before endothelial dysfunction. Dilations to acetylcholine (ACh) were recorded from pressurized renal arteries isolated from 3- and 6-mo-old C57Bl/6 male mice treated or not with the polyphenol catechin (30 mg x kg(-1) x day(-1)) in drinking water for 3 mo. Release of thromboxane (TX) B(2), the metabolite of TXA(2), was measured by using immunoenzymatic assays, and free radical production was measured by using the fluorescent dye CM-H(2)DCFDA. Endothelial nitric oxide synthase (eNOS) and COX-1/2 mRNA expression were quantified by quantitative PCR. N(G)-nitro-L-arginine (L-NNA) reduced (P < 0.05) ACh-induced dilation in vessels isolated from 3- and 6-mo-old mice. In the presence of L-NNA, indomethacin normalized (P < 0.05) the dilation in vessels from 6-mo-old mice only. SQ-29548 (PGH(2)/TXA(2) receptor antagonist) and furegrelate (TXA(2) synthase inhibitor), in the presence of L-NNA, also improved (P < 0.05) dilation. L-NNA increased TXA(2) release and free radical-associated fluorescence, the latter being prevented by SQ-29548. In vessels from 6-mo-old mice treated with catechin for 3 mo, L-NNA-dependent reduction in ACh-mediated dilation was insensitive to indomethacin, whereas TXA(2) release and free radical-associated fluorescence were prevented. eNOS mRNA expression was significantly increased by catechin treatment. Our results suggest that an augmented production of TXA(2) and the associated change in redox regulation precede the development of the endothelial dysfunction.  相似文献   

3.
Pulmonary hypertension and blunted pulmonary vascular responses to ACh develop when newborn pigs are exposed to chronic hypoxia for 3 days. To determine whether a cyclooxygenase (COX)-dependent contracting factor, such as thromboxane, is involved with altered pulmonary vascular responses to ACh, newborn piglets were raised in 11% O(2) (hypoxic) or room air (control) for 3 days. Small pulmonary arteries (100-400 microm diameter) were cannulated and pressurized, and their responses to ACh were measured before and after either the COX inhibitor indomethacin; a thromboxane synthesis inhibitor, dazoxiben or feregrelate; or the thromboxane-PGH(2)-receptor antagonist SQ-29548. In control arteries, indomethacin reversed ACh responses from dilation to constriction. In contrast, hypoxic arteries constricted to ACh before indomethacin and dilated to ACh after indomethacin. Furthermore, ACh constriction in hypoxic arteries was nearly abolished by either dazoxiben, feregrelate, or SQ-29548. These findings suggest that thromboxane is the COX-dependent contracting factor that underlies the constrictor response to ACh that develops in small pulmonary arteries of piglets exposed to 3 days of hypoxia. The early development of thromboxane-mediated constriction may contribute to the pathogenesis of chronic hypoxia-induced pulmonary hypertension in newborns.  相似文献   

4.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

5.
Adrenomedullin (ADM) is upregulated in cardiac tissue under various pathophysiological conditions. However, the direct inotropic effect of ADM on normal and compromised cardiomyocytes is not clear. In rat ventricular myocytes, ADM produced an initial (<30 min) increase in cell shortening and Ca(2+) transient and, on prolonged incubation (>1 h), a marked decrease in cell shortening and Ca(2+) transient. Both effects were sensitive to inhibition by the ADM antagonist ADM-(22-52). The increase and decrease in cell shortening and Ca(2+) transient were attenuated by pretreatment with indomethacin [a nonspecific cyclooxygenase (COX) inhibitor], nimesulide and SC-236 (specific COX-2 inhibitors), and tranylcypromine (a prostacyclin synthase inhibitor); SQ-29548 (a thromboxane receptor antagonist) was without effect. Cells isolated from LPS-treated rats that were in the late, hypodynamic phase of septic shock also showed a marked decrease in cell shortening and Ca(2+) transient. Because ADM is overexpressed in sepsis, we repeated the above protocol in cells isolated from LPS-treated rats. At 4 h after LPS injection, ADM levels markedly increased in plasma, ventricles, and freshly isolated ventricular myocytes. Decreases in cell shortening and Ca(2+) transient in LPS-treated cells were reversed by pretreatment with ADM-(22-52). Anti-ADM (rat) IgG also reversed the decrease in cell shortening and other parameters of cell kinetics. Indomethacin, SC-236, and tranylcypromine restored cell contractility and the decrease in Ca(2+) transient, whereas SQ-29548 had no effect, implying that prostacyclin played a role in both effects. However, with regard to cell-shortening kinetics, indomethacin and SQ-29548 decreased the amount of time taken by the cells to return to baseline, whereas SC-236 and tranylcypromine did not, implying that not only prostacyclin, but also thromboxane, is involved. The results indicate that ADM interacts with COX to yield prostanoids, which mediate its negative inotropic effect in LPS-treated rat ventricular myocytes.  相似文献   

6.
We examined the role of thromboxane A2 (TXA2) in LPS-induced hyperresponsiveness of hepatic portal circulation to endothelins (ETs) and whether Kupffer cells are the primary source of TXA2 release in response to ET-1 in endotoxemia. After 6 h of LPS (1 mg/kg body wt ip) or saline (control), liver was isolated and perfused with recirculating Krebs-Henseleit bicarbonate buffer at a constant flow rate (100 ml.min(-1).kg body wt(-1)). ET-1 (10 pmol/min) was infused for 10 min. Portal pressure (PP) was continuously monitored during perfusion. Perfusate was sampled for enzyme immunoassay of thromboxane B2 (TXB2; the stable metabolite of TXA2) and lactate dehydrogenase (LDH) assay. ET-1 infusion resulted in a significantly greater increase of PP in the LPS group than in controls. Both TXA2 synthase inhibitor furegrelate (Fureg) and TXA2 receptor antagonist SQ-29548 (SQ) substantially blocked enhanced increase of PP in the LPS group (4.9 +/- 0.4 vs. 3.6 +/- 0.5 vs. 2.6 +/- 0.6 mmHg for LPS alone, LPS + Fureg, and LPS + SQ, respectively; P < 0.05) while having no significant effect on controls. GdCl3 for inhibition of Kupffer cells had similar effects (4.9 +/- 0.4 mmHg vs. 2.9 +/- 0.4 mmHg for LPS alone and GdCl3 + LPS, respectively; P < 0.05). In addition, the attenuated PP after ET-1 was found concomitantly with significantly decreased releases of TXB2 and LDH in LPS rats treated with Fureg, SQ, and GdCl3 (886.6 +/- 73.4 vs. 110.8 +/- 0.8 vs. 114.8 +/- 54.7 vs. 135.2 +/- 45.2 pg/ml, respectively; P < 0.05). After 6 h of LPS, Kupffer cells in isolated cell preparations released a significant amount of TXA2 in response to ET-1. These results clearly indicate that hyperresponsiveness of hepatic portal circulation to ET-1 in endotoxemia is mediated at least in part by TXA2-induced receptor activation, and Kupffer cells are likely the primary source of increased TXA2 release.  相似文献   

7.
We have previously shown that estrogen treatment increases cerebrovascular cyclooxygenase-1, prostacyclin synthase, and production of prostacyclin. Therefore, vascular tone and prostanoid production were measured to investigate functional consequences of estrogen exposure. Middle cerebral arteries were isolated from ovariectomized female Fischer-344 rats with or without chronic in vivo 17beta-estradiol treatment. In vivo 17beta-estradiol treatment increased cerebral artery diameter; functional endothelium was required for expression of these differences. The nonspecific cyclooxygenase inhibitor indomethacin constricted, whereas arachidonic acid dilated, cerebral arteries from estrogen-treated animals. Estrogen exposure increased production of prostacyclin by cerebral arteries. Conversely, in estrogen-deficient animals, indomethacin dilated and arachidonic acid constricted cerebral blood vessels. This correlated with vasorelaxation following inhibition of the thromboxane-endoperoxide receptor with SQ-29548 but not after selective blockade of thromboxane synthase with furegrelate, suggesting prostaglandin endoperoxide (i.e., PGH2) activity. Removal of the endothelium or selective blockade of cyclooxygenase-1 with SC-560 abolished estrogen-mediated differences in the effects of arachidonate on vessel diameter and on prostacyclin production by cerebral arteries. These data suggest 17beta-estradiol decreases cerebrovascular tone by shifting the primary end product of the endothelial cyclooxygenase-1 pathway from the constrictor prostaglandin PGH2 to the vasodilator prostacyclin. These effects of estrogen may contribute to the heightened thromboresistance and enhanced cerebral blood flow documented in pre-versus postmenopausal women.  相似文献   

8.
The effects of OKY-1581, a thromboxane synthesis inhibitor, on pulmonary vascular responses to arachidonic acid (AA) were investigated under baseline and elevated tone conditions in the intact chest cat. Under conditions of controlled blood flow at baseline tone, intralobar injections of AA increased lobar arterial pressure in a dose-related manner. These pressor responses were reduced by OKY-1581, and a small vasodilator response was unmasked. The administration of indomethacin to these same animals abolished all responses to AA. When baseline tone in the pulmonary vascular bed was elevated by infusion of U46619, intralobar injections of AA caused a biphasic change in lobar arterial pressure characterized by an initial increase followed by a secondary fall in pressure. Treatment with OKY-1581 attenuated the pressor component of the response and enhanced the depressor component of the response. All responses to AA at elevated tone were also blocked by indomethacin. Pressor responses to intralobar injections of U46619 were not altered by OKY-1581 or indomethacin and were similar under baseline and high pulmonary vascular tone conditions. The results of this study suggest that the pulmonary pressor response to AA in the cat is dependent in large part on the formation of TXA2 and also suggest that TXA2, PGI2, and vasoconstrictor prostaglandins (PGF2 alpha, PGD2, PGE2) are formed from AA in the cat lung.  相似文献   

9.
We measured the effects of stable thromboxane A2 (TXA2) analogues on signalling in cultured human myometrial cells. U46619 and/or IBOP stimulated total inositol phosphates (IPs) and cAMP production, RhoA-associated protein kinase (ROK) activity and elevated intracellular calcium [Ca2+]i. Pretreatment of the cells with pertussis toxin did not inhibit IPs or [Ca2+]i production but the thromboxane receptor (TP) antagonist SQ-29548 did inhibit IPs and cAMP production, the elevation of [Ca2+]i, and the increase in ROK activity. Pretreatment with thapsigargin inhibited [Ca2+]i elevation. TP receptor-stimulated ROK activity was inhibited by the ROK inhibitor Y27632 while ROK activity was enhanced by the caspase 3 inhibitor, Z-DEVD-FMK. TP receptor-stimulated IPs production is additive to prostaglandin F2alpha (FP) or prostaglandin E (EP) receptor-stimulated IPs production and neither FP nor EP receptor-stimulated IPs production is inhibited by SQ29548. Thus cultured human myometrial cells express at least two functional TP receptor subtypes; TPalpha-like (cAMP-stimulating) and TPbeta-like (IPs, [Ca2+] and ROK-stimulating).  相似文献   

10.
Fish oil has been reported as having beneficial effects on cardiovascular diseases. Elevated serum lipoproteins, prostaglandins and intracellular free calcium concentrations [( Ca2+]i) of the vasculature and thus the phosphoinositide (PI) turnover may be involved in the pathogenesis of these disorders. Therefore, the effect of fish oil on the potency of both low-density lipoprotein (LDL) and angiotensin II (AII) to stimulate the PI turnover in cultured rat vascular smooth muscle cells (VSMC) has been studied. Furthermore, a possible link between PI turnover activity and thromboxane A2 (TXA2) metabolism in these cells has been investigated. In VSMC cultured for up to 7 weeks with either fish oil or n-3 eicosapentaenoic acid (EPA) a decrease to 5-48% of the LDL-induced inositol trisphosphate (IP3) formation (= 100%) was found. A similar range of decreased IP3 synthesis was observed, when AII was used instead of LDL. Both LDL- and AII-stimulated TXA2 synthesis was suppressed concomitantly within the range 34-60%. Blockade of VSMC TXA2 biosynthesis with either indomethacin or TXA2 synthetase blocker (SQ-80338) inhibited LDL-induced formation of IP3 in a dose-dependent manner. Similar results were obtained, when TXA2 receptor coupling antagonists (SQ-27427 or BM-13177) were used. However, blockers of TXA2 synthesis and of TXA2 receptor binding failed to affect AII-induced formation of IP3.  相似文献   

11.
Buyukcoskun NI  Gulec G  Ozluk K 《Peptides》2001,22(9):1415-1420
Participation of central cholinergic system in the effects of intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) on blood pressure and heart rate was studied in conscious, freely moving rats. Ang II dose-dependently increased blood pressure and decreased heart rate. Both atropine and mecamylamine (i.c.v.) pretreatments prevented the cardiovascular effects of Ang II. Pretreatment with a vasopressin V1 antagonist also prevented the cardiovascular responses to Ang II. Our data suggest that the central pressor effect of Ang II is mediated in part by central acetylcholine via both muscarinic and nicotinic receptors, and vasopressin participates in this effect through V1 receptors.  相似文献   

12.
Tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta are formed simultaneously under inflammatory conditions such as asthma and acute respiratory distress syndrome. Here we investigated the effects of TNF-alpha (10 ng/ml) and/or IL-1beta (10 ng/ml) in isolated blood-free perfused rat lungs. In lungs precontracted with methacholine, IL-1beta alone and IL-1beta/TNF-alpha decreased airway resistance 10 min after administration, whereas TNF-alpha alone had no effect. In untreated lungs, airway resistance was unaltered by either cytokine alone but started to increase 40 min after treatment with both cytokines together, indicating bronchoconstriction. The bronchoconstriction was accompanied by a steroid-sensitive increase in cyclooxygenase (COX)-2 mRNA expression and thromboxane formation. The cytokine-induced bronchoconstriction was blocked by the thromboxane receptor antagonist SQ-29548, indomethacin, the selective COX-2 inhibitor NS-398, and the steroid dexamethasone. We conclude that IL-1beta has an early bronchodilatory effect (after 10 min) that is unchanged by TNF-alpha. However, at later time points (after 40 min), IL-1beta and TNF-alpha in concert cause a COX-2- and thromboxane-dependent bronchoconstriction. Our findings show that TNF-alpha and IL-1beta exert complex and time-dependent effects on lung functions that cannot be predicted by studying each cytokine alone.  相似文献   

13.
The components of the renin-angiotensin system exist in the brain but their physiological role is uncertain. The effects of two angiotensin converting enzyme (ACE) inhibitors, MK 421 (or its diacid) and captopril, on brain ACE activity, as measured by inhibition of the pressor response to intracerebroventricularly (i.c.v.) administered angiotensin I (AI), and the potential contribution of the central nervous system to their antihypertensive activity were evaluated in the present series of experiments. The diacid of MK 421 (1 and 10 ug) and captopril (3 and 10 ug) given i.c.v. to conscious normotensive rats reduced the pressor response to i.c.v. AI indicating that they can inhibit brain ACE. Responses to AII were unaffected. Oral administration of maximal antihypertensive doses of MK 421 (10 mg/kg) and of captopril (30 mg/kg) to normotensive rats did not attenuate pressor responses to i.c.v. AI indicating that brain ACE was not inhibited under these circumstances. Intracerebroventricular administration of MK 421 diacid, (10 and 30 ug) and captopril (30 and 100 ug) did not lower baseline blood pressure of spontaneously hypertensive rats. These experiments indicate that MK 421 and captopril can inhibit brain ACE but that the central renin-angiotensin system probably does not contribute to their antihypertensive activity.  相似文献   

14.
Thromboxan A(2) (TXA(2)) is the main product of arachidonic acid metabolism in activated platelets. Platelet-released supernatants (PRS) can induce osteoclast-like cell formation in murine bone marrow cultures via a cyclooxygenase (COX)/receptor activator of NF-kB-ligand (RANKL)-dependent pathway. Here we investigated a possible linkage between platelet-released TXA(2) and osteoclastogenesis. The stable analog of TXA(2), carbocyclic TXA(2) (CTXA(2)) can induce the formation of tartrate-resistant acid phosphatase positive multinucleated cells in murine bone marrow cultures via a RANKL-dependent pathway and requires the presence of stromal cells. Interestingly, the platelet-released instable TXA(2) does not account for osteoclastogenic effects as: (a) PRS-induced osteoclastogenesis in the presence of the TXA(2) receptor antagonist SQ29548; (b) inhibition of platelet TXA(2) synthesis by indomethacin and acetylsalicylic acid failed to decrease the osteoclastogenic potential of the corresponding supernatants; and (c) CTXA(2)-induced osteoclast-like cell formation independent of indomethacin and the selective COX-2 inhibitor NS398.  相似文献   

15.
Thromboxane (TX) B2, a stable metabolic product of hydrolysis of TXA2, was measured by radioimmunoassay in tissue extracts of ovaries of immature rats pretreated with pregnant mare's serum gonadotropin and human chorionic gonadotropin. Ovarian concentrations of TXB2 increased before, and remained elevated after, the time of ovulation. In a subsequent study, ovulation was inhibited in a dose-dependent fashion by a reported TXA2 receptor antagonist, AH23848. Nevertheless, inhibition of the preovulatory rise in synthesis of TXB2 by furegrelate (a thromboxane synthetase inhibitor) did not prevent ovulation. Nor was the blockade of ovulation caused by indomethacin (a cyclooxygenase inhibitor) reversed by a TXA2 mimetic (U-46619). It does not appear that a preovulatory increase in ovarian thromboxane is an obligatory component of the ovulatory mechanism of gonadotropin-primed immature rats.  相似文献   

16.
Cardiovascular effects of cocaine in anesthetized and conscious rats   总被引:1,自引:0,他引:1  
D K Pitts  C E Udom  J Marwah 《Life sciences》1987,40(11):1099-1111
This study examined the cardiovascular and respiratory effects of cocaine and procaine in anesthetized and conscious rats. Intravenous cocaine (0.16-5 mg/Kg) elicited a rapid, dose dependent increase in mean arterial pressure of relatively short duration. In pentobarbital anesthetized (65 mg/Kg, i.p.) animals, the pressor phase was generally followed by a more prolonged depressor phase. These effects on arterial pressure were generally accompanied by a significant tachypnea and at larger doses (2.5 and 5 mg/Kg, i.v.), bradycardia. Procaine (0.31 and 1.25 mg/Kg, i.v.) produced similar cardiovascular and respiratory effects (depressor phase, tachypnea) in pentobarbital anesthetized animals. In conscious-restrained animals, both cocaine and procaine (1.25 mg/kg, i.v.) produced pressor responses. The subsequent depressor response was, however, absent in both cases. The cardiovascular effects of cocaine (0.25-1 mg/Kg, i.v.) in urethane anesthetized (1.25 g/Kg, i.p.) animals were essentially similar to those observed in conscious animals. Procaine (1mg/Kg) did not produce any significant cardiovascular effects in urethane anesthetized animals, but did elicit tachypnea. Reserpine pretreatment (10 mg/Kg, i.p.) did not significantly attenuate the pressor response in urethane anesthetized animals. Phentolamine pretreatment (3 mg/Kg, i.v.) did significantly antagonize the pressor effect in urethane anesthetized animals. These results suggest that: the depressor phase is likely due to a interaction between local anesthetic activity (cocaine and procaine) and barbiturate anesthesia, the cardiovascular effects of cocaine in conscious animals are more similar to those observed in urethane anesthetized rats than in pentobarbital anesthetized rats and the pressor effect in urethane anesthetized rats is apparently due to a reserpine resistant catecholaminergic mechanism.  相似文献   

17.
《Life sciences》1995,58(5):437-445
Intracerebroventricular (i.c.v.) injection of endothelin-1 (ET-1; 100 ng, i.c.v.) produced an initial pressor (24%) (peak at 3 min following ET-1 administration) and a delayed depressor (−40%) (30 and 60 min following ET-1 administration) effects in urethane anesthetized rats. The pressor effect of ET-1 was due to an increase (21%) in cardiac output, while the depressor effect of ET-1 was associated with a marked decrease (−46%) in cardiac output. Stroke volume significantly decreased at 30 and 60 min after the administration of ET-1. No change in total peripheral vascular resistance and heart rate was observed following central administration of ET-1. The effects of ET-1 on blood pressure, cardiac output and stroke volume were not observed in BQ123 (10 μg, i.c.v.) treated rats. Blood flow to the cerebral hemispheres, cerebellum, midbrain and brain stem was not affected at 3 min, but a significant decrease in blood flow to all the regions of the brain was observed at 30 and 60 min following central administration of ET-1. BQ123 pretreatment completely blocked the central ET-1 induced decrease in blood flow to the brain regions. It is concluded that the pressor effect of centrally administered ET-1 is not accompanied by a severe decrease in brain blood flow, however, a subsequent decrease in blood pressure is associated with a decrease in blood flow to the brain. The cardiovascular effects of ET-1 including decrease in brain blood flow are mediated through central ETA receptors.  相似文献   

18.
Experiments were designed to determine the hemodynamic responses of conscious, unrestrained rats given intracerebroventricular (i.c.v.) injections of dynorphin A-(1-13) and the possible central receptor mechanisms mediating those changes. Male Sprague-Dawley rats (300 gb. wt.) received i.c.v. injections (by gravity flow in a total volume of 3 or 5 microliter) of control solutions of sterile saline (SS) or dimethylsulfoxide (DMSO) or 1.5, 3.0 or 6.1 nmol of dynorphin A-(1-13). Blood pressure and heart rate changes were monitored over 2 h after administration; as well, feeding activity was visually assessed and scored over this period. Other groups of conscious rats were pretreated i.c.v. with equimolar doses (3.0-24.4 nmol) of specific receptor antagonists (naloxone HCl, phentolamine HCl, propranolol HCl, yohimbine HCl or prazosin HCl) 10 min before subsequent i.c.v. administration of SS or DMSO/SS or 6.1 nmol of dynorphin A-(1-13). I.c.v. injection of dynorphin A-(1-13) caused a dose-related pressor response, associated temporally with tachycardia. As well, dynorphin evoked feeding activity and some grooming, which occurred when the rats were hypertensive and tachycardic and decreased as heart rate and blood pressure returned to control levels. I.c.v. pretreatment studies indicated that naloxone HCl (12.2 nmol), phentolamine HCl (12.2 nmol) and prazosin HCl (6.1 nmol) blocked the pressor response, tachycardia as well as feeding activity of rats subsequently given dynorphin. The results suggest the pressor and tachycardic effects of conscious rats following i.c.v. dynorphin administration may, in part, be due to behavioral activation (feeding). As well, these data indicate that both opioid as well as alpha 1-adrenergic receptors within the CNS are involved in mediating the pressor, tachycardic and feeding responses of conscious rats given i.c.v. injections of dynorphin A.  相似文献   

19.
Prostaglandin F (PGF) is one of the most common metabolites of arachidonic acid (AA) in rat brain. When administered intracerebroventricularly (i.c.v.) to rats, both AA and PGF exert dose-related hypertensive, tachycardic and hyperthermic effects. Metabolic alterations in the endogenous formation of some prostaglandins in the brain-stem of spontaneously hypertensive rats (SHR) have been reported. Therefore the central effects of AA and PGF on blood pressure, heart rate and body temperature were studied both in SHR and normotensive Wistar rats (NR) under urethane-anaesthesia. The hypertensive effect of AA i.c.v. (0.01–100 μg/rat) was larger in magnitude in SHR than in NR, but there was no significant difference in the AA-induced changes of heart rate and body temperature between the groups. Pretreatment of NR with sodium meclofenamate (1 mg/rat i.c.v.) antagonised the central effects of AA indicating that these effects are not due to AA itself but to its conversion to prostaglandins. Unlike the effects of AA, the central hypertensive, tachycardic and hyperthermic responses to PGF (0.5–50 μg/rat i.c.v.) were significantly attenuated in SHR. The present results obtained with AA are compatible with the previous assumption that the synthesis of prostaglandins in the brain of SHR might differ from that in NR. The results also demonstrate that the central effects of PGF are reduced in SHR.  相似文献   

20.
Intracerebroventricular (i.c.v.) choline (50–150 g) increased blood pressure and decreased heart rate in spinal cord transected, hypotensive rats. Choline administered intraperitoneally (60 mg/kg), also, increased blood pressure, but to a lesser extent. The pressor response to i.c.v. choline was associated with an increase in plasma vasopressin. Mecamylamine pretreatment (50 g; i.c.v.) blocked the pressor, bradycardic and vasopressin responses to choline (150 g). Atropine pretreatment (10 g; i.c.v.) abolished the bradycardia but failed to alter pressor and vasopressin responses. Hemicholinium-3 [HC-3 (20 g; i.c.v.)] pretreatment attenuated both bradycardia and pressor responses to choline. The vasopressin V1 receptor antagonist, (-mercapto-, -cyclopenta-methylenepropionyl1, O-Me-Tyr2, Arg8)-vasopressin (10 g/kg) administered intravenously 5 min after choline abolished the pressor response and attenuated the bradycardia-induced by choline. These data show that choline restores hypotension effectively by activating central nicotinic receptors via presynaptic mechanisms, in spinal shock. Choline-induced bradycardia is mediated by central nicotinic and muscarinic receptors. Increase in plasma vasopressin is involved in cardiovascular effects of choline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号