首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: To evaluate the effect of a 4‐day carbohydrate overfeeding on whole body net de novo lipogenesis and on markers of de novo lipogenesis in subcutaneous adipose tissue of healthy lean humans. Research Methods and Procedures: Nine healthy lean volunteers (five men and four women) were studied after 4 days of either isocaloric feeding or carbohydrate overfeeding. On each occasion, they underwent a metabolic study during which their energy expenditure and net substrate oxidation rates (indirect calorimetry), and the fractional activity of the pentose‐phosphate pathway in subcutaneous adipose tissue (subcutaneous microdialysis with 1, 613C2, 6, 62H2 glucose) were assessed before and after administration of glucose. Adipose tissue biopsies were obtained at the end of the experiments to monitor mRNAs of key lipogenic enzymes. Results: Carbohydrate overfeeding increased basal and postglucose energy expenditure and net carbohydrate oxidation. Whole body net de novo lipogenesis after glucose loading was markedly increased at the expense of glycogen synthesis. Carbohydrate overfeeding also increased mRNA levels for the key lipogenic enzymes sterol regulatory element‐binding protein‐1c, acetyl‐CoA carboxylase, and fatty acid synthase. The fractional activity of adipose tissue pentose‐phosphate pathway was 17% to 22% and was not altered by carbohydrate overfeeding. Discussion: Carbohydrate overfeeding markedly increased net de novo lipogenesis at the expense of glycogen synthesis. An increase in mRNAs coding for key lipogenic enzymes suggests that de novo lipogenesis occurred, at least in part, in adipose tissue. The pentose‐phosphate pathway is active in adipose tissue of healthy humans, consistent with an active role of this tissue in de novo lipogenesis.  相似文献   

2.
Dietary fructose has been suspected to contribute to development of metabolic syndrome. However, underlying mechanisms of fructose effects are not well characterized. We investigated metabolic outcomes and hepatic expression of key regulatory genes upon fructose feeding under well defined conditions. Rats were fed a 63% (w/w) glucose or fructose diet for 4 h/day for 2 weeks, and were killed after feeding or 24-hour fasting. Liver glycogen was higher in the fructose-fed rats, indicating robust conversion of fructose to glycogen through gluconeogenesis despite simultaneous induction of genes for de novo lipogenesis and increased liver triglycerides. Fructose feeding increased mRNA of previously unidentified genes involved in macronutrient metabolism including fructokinase, aldolase B, phosphofructokinase-1, fructose-1,6-bisphosphatase and carbohydrate response element binding protein (ChREBP). Activity of glucose-6-phosphate dehydrogenase, a key enzyme for ChREBP activation, remained elevated in both fed and fasted fructose groups. In the fasted liver, the fructose group showed lower non-esterified fatty acids, triglycerides and microsomal triglyceride transfer protein mRNA, suggesting low VLDL synthesis even though plasma VLDL triglycerides were higher. In conclusion, fructose feeding induced a broader range of genes than previously identified with simultaneous increase in glycogen and triglycerides in liver. The induction may be in part mediated by ChREBP.  相似文献   

3.
The effects on newly-hatched turkey poults of feeding diets with varying levels of carbohydrate and of oral gavage with suspensions of corn starch were studied. Feeding lowered hepatic glucose-6-phosphatase activity and raised blood glucose and hepatic glycogen concentrations. In Nicholas strain turkeys, increases of dietary levels of carbohydrate enhanced hepatic glycogen stores without affecting blood glucose concentration or glucose-6-phosphatase activity. Oral gavage of poults with suspensions of corn starch in water raised blood glucose and hepatic glycogen concentrations and lowered glucose-6-phosphatase activity in dose- and time-dependent manners. Changes were noted at 1 hr post-gavage. Oral gavage with starch lowered lactate concentrations in muscle and plasma and lowered plasma concentrations of β-hydroxybutyrate and urate. Plasma concentrations of pyruvate appeared to decline with post-hatch holding without feed. Thus, the apparent effect of starch gavage on plasma pyruvate (high concentration) is dependent upon the length of the holding period for the controls. The data show that poults can alter their metabolism (decrease lipid oxidation and gluconeogenesis and increase carbohydrate stores) almost immediately (1 hr) after oral administration of carbohydrate.  相似文献   

4.
Ca(2+)/calmodulin-dependent protein kinase kinase 2 (CaMKK2) is a member of the Ca(2+)/CaM-dependent protein kinase family that is expressed abundantly in brain. Previous work has revealed that CaMKK2 knockout (CaMKK2 KO) mice eat less due to a central nervous system -signaling defect and are protected from diet-induced obesity, glucose intolerance, and insulin resistance. However, here we show that pair feeding of wild-type mice to match food consumption of CAMKK2 mice slows weight gain but fails to protect from diet-induced glucose intolerance, suggesting that other alterations in CaMKK2 KO mice are responsible for their improved glucose metabolism. CaMKK2 is shown to be expressed in liver and acute, specific reduction of the kinase in the liver of high-fat diet-fed CaMKK2(floxed) mice results in lowered blood glucose and improved glucose tolerance. Primary hepatocytes isolated from CaMKK2 KO mice produce less glucose and have decreased mRNA encoding peroxisome proliferator-activated receptor γ coactivator 1-α and the gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, and these mRNA fail to respond specifically to the stimulatory effect of catecholamine in a cell-autonomous manner. The mechanism responsible for suppressed gene induction in CaMKK2 KO hepatocytes may involve diminished phosphorylation of histone deacetylase 5, an event necessary in some contexts for derepression of the peroxisome proliferator-activated receptor γ coactivator 1-α promoter. Hepatocytes from CaMKK2 KO mice also show increased rates of de novo lipogenesis and fat oxidation. The changes in fat metabolism observed correlate with steatotic liver and altered acyl carnitine metabolomic profiles in CaMKK2 KO mice. Collectively, these results are consistent with suppressed catecholamine-induced induction of gluconeogenic gene expression in CaMKK2 KO mice that leads to improved whole-body glucose homeostasis despite the presence of increased hepatic fat content.  相似文献   

5.
6.
High-protein diets have been shown to promote weight loss, to improve glucose homeostasis and to increase energy expenditure and fat oxidation. We aimed to study whether leucine supplementation is able to mimic the alleviating effects of high-protein diets on metabolic syndrome parameters in mice fed high-fat diet.Male C57BL/6 mice were fed for 20 weeks with semisynthetic high-fat diets (20% w/w of fat) containing either an adequate (10% protein, AP) or high (50% protein, HP) amount of whey protein, or an AP diet supplemented with l-leucine corresponding to the leucine content of the HP diet (6% leucine, AP+L). Body weight and composition, energy expenditure, glucose tolerance, hepatic triacylglycerols (TG), plasma parameters as well as expression levels of mRNA and proteins in different tissues were measured. HP feeding resulted in decreased body weight, body fat and hepatic TG accumulation, as well as increased insulin sensitivity compared to AP. This was linked to an increased total and resting energy expenditure (REE), decreased feed energy efficiency, increased skeletal muscle (SM) protein synthesis, reduced hepatic lipogenesis and increased white fat lipolysis. Leucine supplementation had effects that were intermediate between HP and AP with regard to body composition, liver TG content, insulin sensitivity, REE and feed energy efficiency, and similar effects as HP on SM protein synthesis. However, neither HP nor AP+L showed an activation of the mammalian target of rapamycin pathway in SM. Leucine supplementation had no effect on liver lipogenesis and white fat lipolysis compared to AP. It is concluded that the essential amino acid leucine is able to mimic part but not all beneficial metabolic effects of HP diets.  相似文献   

7.
Exercise induces an increase in GLUT4 in skeletal muscle with a proportional increase in glucose transport capacity. This adaptation results in enhanced glycogen accumulation, i.e., "supercompensation," in response to carbohydrate feeding after glycogen-depleting exercise. The increase in GLUT4 reverses within 40 h after exercise in carbohydrate-fed rats. The purpose of this study was to determine whether prevention of skeletal muscle glycogen supercompensation after exercise results in maintenance of the increases in GLUT4 and the capacity for glycogen supercompensation. Rats were exercised by means of three daily bouts of swimming. GLUT4 mRNA was increased approximately 3-fold and GLUT4 protein was increased approximately 2-fold 18 h in epitrochlearis muscle after exercise. These increases in GLUT4 mRNA and protein reversed completely within 42 h after exercise in rats fed a high-carbohydrate diet. In contrast, the increases in GLUT4 protein, insulin-stimulated glucose transport, and increased capacity for glycogen supercompensation persisted unchanged for 66 h in rats fed a carbohydrate-free diet that prevented glycogen supercompensation after exercise. GLUT4 mRNA was still elevated at 42 h but had returned to baseline by 66 h after exercise in rats fed the carbohydrate-free diet. Glycogen-depleted rats fed carbohydrate 66 h after exercise underwent muscle glycogen supercompensation with concomitant reversal of the increase in GLUT4. These findings provide evidence that prevention of glycogen supercompensation after exercise results in persistence of exercise-induced increases in GLUT4 protein and enhanced capacity for glycogen supercompensation.  相似文献   

8.
This study examined the effect on glycogen resynthesis during recovery from exercise of feeding glucose orally to physically trained rats which had been fed for 5 weeks on high-protein low fat (HP), high-protein/long-chain triglyceride (LCT) or high carbohydrate (CHO) diets. Muscle glycogen remained low and hepatic gluconeogenesis was stimulated by long-term fat or high-protein diets. The trained rats received, via a stomach tube, 3 ml of a 34% glucose solution immediately after exercise (2 h at 20 m.min-1), followed by 1-ml portions at hourly intervals until the end of the experiments. When fed glucose soleus muscle glycogen overcompensation occurred rapidly in the rats fed all three diets following prolonged exercise. In LCT- and CHO-fed rats, glucose feeding appeared more effective for soleus muscle repletion than in HP-fed rats. The liver demonstrated no appreciable glycogen overcompensation. A complete restoration of liver glycogen occurred within a 2- to 4-h recovery period in the rats fed HP-diet, while the liver glycogen store had been restored by only 67% in CHO-fed rats and 84% in LCT-fed rats within a 6-h recovery period. This coincides with low gluconeogenesis efficiency in these animals.  相似文献   

9.
We investigated mechanisms whereby peroxisome proliferator-activated receptor γ (PPARγ) agonism redistributes lipid from visceral (VF) toward subcutaneous fat (SF) by studying the impact of PPARγ activation on VF and SF glucose uptake and metabolism, lipogenesis, and enzymes involved in triacylglycerol (TAG) synthesis. VF (retroperitoneal) and SF (inguinal) of rats treated or not for 7 days with rosiglitazone (15 mg/kg/day) were evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (or lipin-1), and diacylglycerol acyltransferase. Rosiglitazone increased SF glucose uptake, GLUT4 mRNA, and insulin-stimulated glucose oxidation, conversion to lactate, glycogen, and the glycerol and fatty acid components of TAG. In VF, only glucose incorporation into TAG-glycerol was stimulated by rosiglitazone and less so than in SF (1.5- vs. 3-fold). mRNA levels of proteins involved in glycolysis, Krebs cycle, glycogen synthesis, and lipogenesis were markedly upregulated by rosiglitazone in SF and again less so in VF. Rosiglitazone activated TAG-glycerol synthesis in vivo (2.8- vs. 1.9-fold) and lipin activity (4.6- vs. 1.5-fold) more strongly in SF than VF, whereas GPAT activity was increased similarly in both depots. The preferential increase in glucose uptake and intracellular metabolism in SF contributes to the PPARγ-mediated redistribution of TAG from VF to SF, which in turn favors global insulin sensitization.  相似文献   

10.
We previously found that the exercise-induced elevation in GLUT4 mRNA of rat muscle can be rapidly down-regulated when glucose is given immediately following exercise. The purpose of this study was to determine the effect of postexercise carbohydrate diet on GLUT4 and hexokinase (HK) II mRNA levels in the human skeletal muscle. Eight untrained male subjects (age, 20.7+/-3.1 years) exercised for 60 min on a cycle ergometer at a 70-75% maximal oxygen consumption. The postexercise dietary treatment was performed in a crossover design. Immediately after the exercise, a diet with 70% carbohydrate content (1 g per kilogram of body weight; 356+/-19.8 kcal) was given to half of the subjects (eaten in 10 min) followed by a 3-h recovery, while the control subjects remained unfed for 3 h. Biopsies were performed on the deep portion of the vastus lateralis muscle of all subjects immediately after the exercise and 3 h after the carbohydrate ingestion. Blood glucose and serum insulin concentrations were measured every 30 min for 3 h. At the end of the 3-h recovery, blood glucose and serum insulin levels were not different from control levels, indicating that the oral carbohydrate was mostly disposed in the body within 3 h. In addition, GLUT4 and HK II mRNA levels were significantly lowered in the exercised human skeletal muscle in subjects receiving the carbohydrate diet. In conclusion, the present study demonstrates that GLUT4 mRNA and HK II mRNA in the exercised human skeletal muscle were significantly lowered by a high-carbohydrate diet.  相似文献   

11.
12.
Studies on oral glucose intolerance in fish   总被引:3,自引:0,他引:3  
The oral glucose tolerance test, a diagnostic procedure used in the detection of human diabetes, was used to study carbohydrate metabolism in rainbow trout, Salmo gairdneri (Richardson). Fish exhibited pronounced and persistent hyperglycaemia on oral glucose administration. Hyperglycaemia was accompanied by decrease in blood amino acids, serum free fatty acids and cholesterol and marked increase in hepatic storage of glycogen. The incidence of oral glucose intolerance results, at least in part from insufficient circulating insulin. Exogenous insulin exerts a hypoglycaemic action and effectively abolishes the hyperglycaemia resulting from glucose administration. Tolbutamidc, the sulphonylurea hypoglycaemic drug, is without effect. Possibly as an indirect result of hyperadreno-corticism, oral glucose tolerance is markedly improved in the pre-spawning female. Long-term feeding of high carbohydrate diet to goldfish Carassius auratus (L.) resulted in gross hepatomegaly due to excessive hepatic glycogen accumulation and, possibly, fatty change of the liver. Protein metabolism was impaired as evidenced by protein depletion. Such degenerative changes in liver metabolism are probably a direct result of oral glucose intolerance and reflect a metabolism adapted to diets normally low in available carbohydrate.  相似文献   

13.
Literature data on the diurnal rhythms of blood glucose, liver glycogen levels and key hepatic enzyme activities of glycolysis, gluconeogenesis, glycogen metabolism and lipogenesis in animals are reviewed. Materials on the diurnal rhythms of the activities of other enzymes involved in carbohydrate metabolism and related pathways such as the equilibrium glycolytic enzymes are also given. Interspecies comparison and analysis of the results and their interpretation are given.  相似文献   

14.
We have recently reported that, during moderate intensity exercise, low muscle glycogen concentration and utilization caused by a high-fat diet is associated with a marked increase in fat oxidation with no effect on plasma glucose uptake (R(d) glucose). It is our hypothesis that this increase in fat oxidation compensates for low muscle glycogen, thus preventing an increase in R(d) glucose. Therefore, the purpose of this study was to determine whether low muscle glycogen availability increases R(d) glucose under conditions of impaired fat oxidation. Six cyclists exercised at 50% peak O(2) consumption (Vo(2 peak)) for 1 h after 2 days on either a high-fat (HF, 60% fat, 24% carbohydrate) or control (CON, 22% fat, 65% carbohydrate) diet to manipulate muscle glycogen to low and normal levels, respectively. Two hours before the start of exercise, subjects ingested 80 mg of propanolol (betaB), a nonselective beta-adrenergic receptor blocker, to impair fat oxidation during exercise. HF significantly decreased calculated muscle glycogen oxidation (P < 0.05), and this decrease was partly compensated for by an increase in fat oxidation (P < 0.05), accompanied by an increase in whole body lipolysis (P < 0.05), despite the presence of betaB. Although HF increased fat oxidation, plasma glucose appearance rate, R(d) glucose, and glucose clearance rate were also significantly increased by 13, 15, and 26%, respectively (all P < 0.05). In conclusion, when lipolysis and fat oxidation are impaired, in this case by betaB, fat oxidation cannot completely compensate for a reduction in muscle glycogen utilization, and consequently plasma glucose turnover increases. These findings suggest that there is a hierarchy of substrate compensation for reduced muscle glycogen availability after a high-fat, low-carbohydrate diet, with fat being the primary and plasma glucose the secondary compensatory substrate. This apparent hierarchy likely serves to protect against hypoglycemia when endogenous glucose availability is low.  相似文献   

15.
The aim of this work was to find by which mechanisms an increased availability of plasma free fatty acids (FFA) reduced carbohydrate utilization during exercise. Rats were fed high-protein medium-chain triglycerides (MCT), high-protein long-chain triglycerides (LCT), carbohydrate (CHO) or high-protein low-fat (HP) diets for 5 weeks, and liver and muscle glycogen, gluconeogenesis and FFA oxidation were studied in rested and trained runner rats. In the rested state the hepatic glycogen store was decreased by fat and protein feeding, whereas soleus muscle glycogen concentration was only affected by high-protein diets. The percentage decrease in liver and muscle glycogen stores, after running, was similar in fat-fed, high-protein and CHO-fed rats. The fact that plasma glucose did not drastically change during exercise could be explained by a stimulation of hepatic gluconeogenesis: the activity of phosphoenolpyruvate carboxykinase (PEPCK) and liver phosphoenolpyruvate (PEP) concentration increased as well as cyclic adenosine monophosphate (AMPc) while liver fructose 2,6-bisphosphate decreased and plasma FFA rose. In contrast, the stimulation of gluconeogenesis in rested HP-, MCT- and LCT-fed rats appears to be independent of cyclic AMP.  相似文献   

16.
Effects of carbohydrate availability on lipogenesis in sheep   总被引:5,自引:4,他引:1       下载免费PDF全文
1. Lipogenesis in sheep liver and adipose tissue was investigated by incorporation studies in vitro with radioactive glucose and acetate and by assays of key enzymes. 2. Carbohydrate availability to sheep was increased by feeding on a diet containing 70% soluble carbohydrate, by infusing glucose into the abomasum or by direct intravenous infusion of glucose. 3. Under these conditions lipogenesis from glucose and acetate was increased from very low values in lìver and adipose tissue, especially in those animals where rumen fermentation was by-passed by glucose infusion. 4. Large increases in the activities of ATP citrate lyase (EC 4.1.3.8) and NADP-malate dehydrogenase (EC 1.1.1.40) occurred in both tissues when lipogenesis was increased. 5. No adaptations were found in the activities of pyruvate carboxylase (EC 6.4.1.1) in adipose tissue, glucokinase (EC 2.7.1.2) in liver or 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) in liver. It is proposed that the absence of these enzymes is not related to glucose availability. 6. The effect of glucose on liver lipogenesis was to increase conversion of acetate into lipid. 7. This effect also occurred in adipose tissue, but in this tissue glucose also became a quantitatively important precursor of triglyceride fatty acid.  相似文献   

17.
18.
19.
20.
To test the hypothesis that the physiologic liporegulatory role of hyperleptinemia is to prevent steatosis during caloric excess, we induced obesity by feeding normal Harlan Sprague-Dawley rats a 60% fat diet. Hyperleptinemia began within 24 h and increased progressively to 26 ng/ml after 10 weeks, correlating with an approximately 150-fold increase in body fat (r = 0.91, p < 0.0001). During this time, the triacylglycerol (TG) content of nonadipose tissues rose only 1-2.7-fold implying antisteatotic activity. In rodents without leptin action (fa/fa rats and ob/ob and db/db mice) receiving a 6% fat diet, nonadipose tissue TG was 4-100 times normal. In normal rats on a 60% fat diet, peroxisome proliferator-activated receptor alpha protein and liver-carnitine palmitoyltransferase-1 (l-CPT-1) mRNA increased in liver. In their pancreatic islets, fatty-acid oxidation increased 30% without detectable increase in the expression of peroxisome proliferator-activated receptor-alpha or oxidative enzymes, whereas lipogenesis from [14C]glucose was slightly below that of the 4% fat-fed rats (p < 0.05). Tissue-specific overexpression of wild-type leptin receptors in the livers of fa/fa rats, in which marked steatosis is uniformly present, reduced TG accumulation in liver but nowhere else. We conclude that a physiologic role of the hyperleptinemia of caloric excess is to protect nonadipocytes from steatosis and lipotoxicity by preventing the up-regulation of lipogenesis and increasing fatty-acid oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号