首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neuronal damage is a hallmark feature of HIV-associated neurological disorders (HANDs). Opiate drug abuse accelerates the incidence and progression of HAND; however, the mechanisms underlying the potentiation of neuropathogenesis by these drugs remain elusive. Opiates such as morphine have been shown to enhance HIV transactivation protein Tat-mediated toxicity in both human neurons and neuroblastoma cells. In the present study, we demonstrate reduced expression of the tropic factor platelet-derived growth factor (PDGF)-B with a concomitant increase in miR-29b in the basal ganglia region of the brains of morphine-dependent simian immunodeficiency virus (SIV)-infected macaques compared with the SIV-infected controls. In vitro relevance of these findings was corroborated in cultures of astrocytes exposed to morphine and HIV Tat that led to increased release of miR-29b in exosomes. Subsequent treatment of neuronal SH-SY5Y cell line with exosomes from treated astrocytes resulted in decreased expression of PDGF-B, with a concomitant decrease in viability of neurons. Furthermore, it was shown that PDGF-B was a target for miR-29b as evidenced by the fact that binding of miR-29 to the 3′-untranslated region of PDGF-B mRNA resulted in its translational repression in SH-SY5Y cells. Understanding the regulation of PDGF-B expression may provide insights into the development of potential therapeutic targets for neuronal loss in HIV-1-infected opiate abusers.  相似文献   

3.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

4.
Sun J  Zheng JH  Zhao M  Lee S  Goldstein H 《Journal of virology》2008,82(11):5562-5572
Inflammatory mediators and viral products produced by human immunodeficiency virus (HIV)-infected microglia and astrocytes perturb the function and viability of adjacent uninfected neuronal and glial cells and contribute to the pathogenesis of HIV-associated neurocognitive disorders (HAND). In vivo exposure to lipopolysaccharide (LPS) activates parenchymal microglia and astrocytes and induces cytokine and chemokine production in the brain. HIV-infected individuals display increased circulating LPS levels due to microbial translocation across a compromised mucosa barrier. We hypothesized that HIV-infected microglia and astrocytes display increased sensitivity to the proinflammatory effects of LPS, and this combines with the increased levels of systemic LPS in HIV-infected individuals to contribute to the development of HAND. To examine this possibility, we determined the in vivo responsiveness of HIV-infected microglia and astrocytes to LPS using our mouse model, JR-CSF/human cyclin T1 (JR-CSF/hu-cycT1) mice, which are transgenic for both an integrated full-length infectious HIV type 1 (HIV-1) provirus derived from the primary R5-tropic clinical isolate HIV-1(JR-CSF) regulated by the endogenous HIV-1 long terminal repeat and the hu-cycT1 gene under the control of a CD4 promoter. In the current report, we demonstrated that in vivo-administered LPS more potently activated JR-CSF/hu-cycT1 mouse microglia and astrocytes and induced a significantly higher degree of monocyte chemoattractant protein production by JR-CSF/hu-cycT1 astrocytes compared to that of the in vivo LPS response of control littermate mouse microglia and astrocytes. These results indicate that HIV infection increases the sensitivity of microglia and astrocytes to inflammatory stimulation and support the use of these mice as a model to investigate various aspects of the in vivo mechanism of HIV-induced neuronal dysfunction.  相似文献   

5.

Background

Human immunodeficiency virus (HIV) infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH). Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS) with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF)-1α and platelet-derived growth factor (PDGF), critical mediators implicated in the pathogenesis of HIV-PAH.

Methods

The lungs from 4-5 months old HIV-1 transgenic (Tg) rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC) were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB.

Results

HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and activation of HIF-1α plays critical role in gp120 mediated up-regulation of PDGF-BB.

Conclusion

In summary, these findings indicate that viral protein induced oxidative stress results in HIF-1α dependent up-regulation of PDGF-BB and suggests the possible involvement of this pathway in the development of HIV-PAH.  相似文献   

6.
The current treatment therapies available for malignant gliomas are inadequate. There is an urgent need to develop more effective therapies by characterizing the molecular pathogenesis of the disease. Over expression of platelet-derived growth factor (PDGF) ligands and receptors have been reported in malignant gliomas. Platelet-derived growth factor associated protein-1 (PDAP-1) is reported to modulate the mitogenic activity of PDGF ligands, but to date, there is no information concerning its role in PDGF-mediated glioma cell proliferation. This study aimed to characterize the role of PDAP-1 in PDGF-mediated glioma proliferation. The expression of PDAP-1 was observed to be significantly increased (p< 0.05) in grade IV glioma tissue and cell lines compared to grade III. siRNA-mediated knockdown of PDAP-1 reduced the expression of PDGF-B and its downstream genes (Akt1/Protein kinase B (PKB) and phosphoinositide-dependent kinase-1 (PDK1) by up to 50%. In PDAP-1 knockdown glioma cells, more than a twofold reduction was also observed in the level of phosphorylated Akt. Interestingly, knockdown of PDAP-1 in combination with PDGF-B antibody inhibited glioma cell proliferation through activation of Caspase 3/7 and 9. We also demonstrate that PDAP-1 co-localizes with PDGF-B in the cytoplasm of glioma cells, and an interaction between both of the proteins was established. Collectively, these findings suggest that the expression of PDAP-1 is associated with disease malignancy, and its inhibition reduced the proliferation of malignant glioma cells through down-regulation of PDGF-B/Akt/PDK1 signaling. Thus, this study establishes PDAP-1 as an effecter of PDGF signaling in glioma cells and suggests that it could also be a promising therapeutic target.  相似文献   

7.
Platelet-derived growth factor (PDGF) is a potent mitogen in human serum which specifically stimulates the proliferation of mesenchymal cells. We have now examined normal human mammary epithelial cells (HMEC) derived from reduction mammaplasties and grown in a serum-free defined medium. Medium conditioned by HMEC contained a PDGF-like activity that competed with [125I]PDGF for binding to PDGF receptors in normal human fibroblasts. When conditioned media were incubated with antiserum specific for either PDGF-A or PDGF-B, only PDGF-A antiserum was capable of inhibiting binding of conditioned media to PDGF receptors. Using an RNase protection assay, mRNA from normal HMEC was probed for both the PDGF-A and PDGF-B chains. Little or no PDGF-B was found in HMEC strains, while a strong signal was seen with the PDGF-A probe. When HMEC were grown in the presence of transforming growth factor-beta (TGF beta) for 48 h, inhibition of growth was observed in association with a 20- to 40-fold stimulation of PDGF-B mRNA and a 2-fold stimulation of PDGF-A mRNA. This mRNA induction was extremely rapid (within 1 h), and secreted PDGF activity was induced 2- to 3-fold. Two other HMEC growth inhibitors and differentiating agents, sodium butyrate and phorbol ester 12-O-tetradecanoylphorbol-13-acetate, had no effect on PDGF mRNA regulation. The current study suggests that PDGF gene induction is an extremely rapid and specific indicator of TGF beta function regardless of whether TGF beta is acting in a growth stimulatory or inhibitory manner. Any role of PDGF-B in TGF beta modulation of differentiation of normal or malignant mammary gland remains to be determined.  相似文献   

8.
Platelet-derived growth factor (PDGF) occurs as homodimers or heterodimers of related polypeptide chains PDGF-BB, -AA, and -AB. There are two receptors that bind PDGF, termed alpha and beta. The beta receptor recognizes PDGF B chain and is dimerized in response to PDGF BB. The alpha receptor recognizes PDGF B as well as A chains and can be dimerized by the three dimeric forms of PDGF AA, AB, and BB. To characterize PDGF receptor signaling mechanisms and biologic activities in human mesangial cells (MC), we explored the effects of the three PDGF isoforms on DNA synthesis, phospholipase C activation, and PDGF protooncogene induction. PDGF-BB homodimer and AB heterodimer induced a marked increase in DNA synthesis, activation of phsopholipase C, and autoinduction of PDGF A and B chain mRNAs, whereas PDGF-AA homodimer was without effect. The lack of response to PDGF AA could be accounted for by down regulation of the PDGF-alpha receptor since preincubation of MC with suramin restored PDGF AA-induced DNA synthesis. Ligand binding studies demonstrate specific binding of labeled PDGF BB and AB and to a lower extent PDGF AA isoforms to mesangial cells. These results are consistent with predominant expression of PDGF beta receptor in MC, which is linked to phospholipase-C activation. The potent biologic effects of PDGF-AB heterodimer in cells that express very few alpha receptors and do not respond to PDGF AA are somewhat inconsistent with the currently accepted model of PDGF receptor interaction and suggest the presence of additional mechanisms for PDGF isoform binding and activation. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
The bipotential glial progenitor cells (O-2A progenitors), which during development of the rat optic nerve give rise to oligodendrocytes and type 2 astrocytes, are stimulated to divide in culture by platelet-derived growth factor (PDGF), and there is evidence that PDGF is important for development of the O-2A cell lineage in vivo. We have visualized PDGF mRNA in the rat optic nerve by in situ hybridization, and its spatial distribution is compatible with the idea that type 1 astrocytes are the major source of PDGF in the nerve. We can detect mRNA encoding the A chain, but not the B chain of PDGF in the brain and optic nerve, suggesting that the major form of PDGF in the central nervous system is a homodimer of A chains (PDGF-AA). PDGF-AA is a more potent mitogen for O-2A progenitor cells than is PDGF-BB, while the reverse is true for human or rat fibroblasts. Fibroblasts display two types of PDGF receptors, type A receptors which bind to all three dimeric isoforms of PDGF, and type B receptors which bind PDGF-BB and PDGF-AB, but have low affinity for PDGF-AA. Our results suggest that O-2A progenitor cells possess predominantly type A receptors, and proliferate during development in response to PDGF-AA secreted by type 1 astrocytes.  相似文献   

11.
12.
13.
Role of platelet-derived growth factor in wound healing   总被引:16,自引:0,他引:16  
Platelet-derived growth factor (PDGF) is a potent activator for cells of mesenchymal origin. PDGF stimulates chemotaxis, proliferation, and new gene expression in monocytes-macrophages and fibroblasts in vitro, cell types considered essential for tissue repair. Therefore, we analyzed the influence of exogenously administered recombinant B chain homodimers of PDGF (PDGF-BB) on two experimental tissue repair paradigms, incisional and excisional wounds. In both types of wounds, as little as 20-200 picomoles applied a single time to wounds significantly augmented the time dependent influx of inflammatory cells and fibroblasts and accelerated provisional extracellular matrix deposition and subsequent collagen formation. In incisional wounds, PDGF-BB augmented wound breaking strength 50-70% over the first 3 weeks; in excisional wounds, PDGF-BB accelerated time to closure by 30%. PDGF-BB exaggerated, but did not alter, the normal course of soft tissue repair, resulting in a significant acceleration of healing. Long term observations established no apparent differences between PDGF-BB treated and non-treated wounds. Thus, the vulnerary effects of PDGF-BB were transient and fully reversible in both wound healing models. Furthermore, analysis of PDGF-treated and non-treated wounds has provided important insights into mechanisms of normal and deficient tissue repair processes. PDGF appears to transduce its signal through wound macrophages and may trigger the induction of positive autocrine feedback loops and synthesis of endogenous wound PDGF and other growth factors, thereby enhancing the cascade of tissue repair processes required for a fully-healed wound. Thus, PDGF and other wound produced polypeptide growth factors may be the critical regulators of extracellular matrix deposition within healing wounds.  相似文献   

14.
The early phase of the biphasic ventilatory response to hypoxia in mammals is critically dependent on NMDA glutamate receptor activation within the nucleus of the solitary tract. However, the mechanisms underlying the subsequent development of the typical ventilatory roll-off are unclear and could underlie important roles in the functional and molecular adaptation to oxygen deprivation. Because the growth factor platelet-derived growth factor (PDGF)-BB can modulate the open channel probability of NMDA receptors by activating PDGF-beta receptors, its contribution to hypoxic ventilatory roll-off was examined. Administration of PDGF-BB, but not PDGF-AA, in the nucleus of the solitary tract was associated with significant attenuations of the early hypoxic ventilatory response in conscious rats. Furthermore, marked reductions in the magnitude of hypoxic ventilatory roll-off occurred in mice heterozygous for a mutation in the PDGF-beta receptor. Administration of a PDGF-beta receptor antagonist to wild-type littermates elicited similar declines in hypoxic ventilatory roll-off. The relative abundance of PDGF-beta receptors was confirmed in the nucleus of the solitary tract and other nuclei implicated in the hypoxic ventilatory response. In nucleus of the solitary tract lysates, PDGF-beta receptor tyrosine phosphorylation was temporally correlated with hypoxic ventilatory roll-off formation. Increased PDGF-B chain mRNA expression was induced by hypoxia in the nucleus of the solitary tract, and PDGF-B chain immunoreactivity colocalized with approximately 40% of nucleus of the solitary tract neurons, demonstrating hypoxia-induced c-Fos enhancements. Thus, PDGF-BB release and PDGF-beta receptor activation in the nucleus of the solitary tract are critical components of hypoxic ventilatory roll-off and may have important functional implications in processes underlying survival and acclimatization to hypoxic environments.  相似文献   

15.
16.
PDGF may be involved in the pathogenesis of a variety of disorders including atherosclerosis and certain types of cancer. There is currently little understanding of the molecular structure of PDGF and of the critical amino acid residues involved in receptor binding and cell activation. Two such PDGF-B chain residues, arginine 27 and isoleucine 30, have been identified by a site-directed mutagenesis programme. Substitutions in these positions can lead to PDGF mutants defective in both receptor affinity and cell activation as judged by displacement of [125I]PDGF-BB, mitogenic assay and inositol lipid turnover. Circular dichroism and fluorescence spectroscopy show that such mutations do not disrupt the structure of PDGF.  相似文献   

17.
A coordinated reciprocal interaction between epithelium and mesenchyme is involved in salivary gland morphogenesis. The submandibular glands (SMGs) of Wnt1-Cre/R26R mice have been shown positive for mesenchyme, whereas the epithelium is beta-galactosidase-negative, indicating that most mesenchymal cells are derived from cranial neural crest cells. Platelet-derived growth factor (PDGF) receptor alpha is one of the markers of neural crest-derived cells. In this study, we analyzed the roles of PDGFs and their receptors in the morphogenesis of mouse SMGs. PDGF-A was shown to be expressed in SMG epithelium, whereas PDGF-B, PDGFRalpha, and PDGFRbeta were expressed in mesenchyme. Exogenous PDGF-AA and -BB in SMG organ cultures demonstrated increased levels of branching and epithelial proliferation, although their receptors were found to be expressed in mesenchyme. In contrast, short interfering RNA for Pdgfa and -b as well as neutralizing antibodies for PDGF-AB and -BB showed decreased branching. PDGF-AA induced the expression of the fibroblast growth factor genes Fgf3 and -7, and PDGF-BB induced the expression of Fgf1, -3, -7, and -10, whereas short interfering RNA for Pdgfa and Pdgfb inhibited the expression of Fgf3, -7, and -10, indicating that PDGFs regulate Fgf gene expression in SMG mesenchyme. The PDGF receptor inhibitor AG-17 inhibited PDGF-induced branching, whereas exogenous FGF7 and -10 fully recovered. Together, these results indicate that fibroblast growth factors function downstream of PDGF signaling, which regulates Fgf expression in neural crest-derived mesenchymal cells and SMG branching morphogenesis. Thus, PDGF signaling is a possible mechanism involved in the interaction between epithelial and neural crest-derived mesenchyme.  相似文献   

18.

Background

Airway wall remodelling is an important pathology of asthma. Growth factor induced airway smooth muscle cell (ASMC) proliferation is thought to be the major cause of airway wall thickening in asthma. Earlier we reported that Dimethylfumarate (DMF) inhibits platelet-derived growth factor (PDGF)-BB induced mitogen and stress activated kinase (MSK)-1 and CREB activity as well as IL-6 secretion by ASMC. In addition, DMF altered intracellular glutathione levels and thereby reduced proliferation of other cell types.

Methods

We investigated the effect of DMF on PDGF-BB induced ASMC proliferation, on mitogen activated protein kinase (MAPK) activation; and on heme oxygenase (HO)-1 expression. ASMC were pre-incubated for 1 hour with DMF and/or glutathione ethylester (GSH-OEt), SB203580, hemin, cobalt-protoporphyrin (CoPP), or siRNA specific to HO-1 before stimulation with PDGF-BB (10 ng/ml).

Results

PDGF-BB induced ASMC proliferation was inhibited in a dose-dependant manner by DMF. PDGF-BB induced the phosphorylation of ERK1/2 and p38 MAPK, but not of JNK. DMF enhanced the PDGF-BB induced phosphorylation of p38 MAPK and there by up-regulated the expression of HO-1. HO-1 induction inhibited the proliferative effect of PDGF-BB. HO-1 expression was reversed by GSH-OEt, or p38 MAPK inhibition, or HO-1 siRNA, which all reversed the anti-proliferative effect of DMF.

Conclusion

Our data indicate that DMF inhibits ASMC proliferation by reducing the intracellular GSH level with subsequent activation of p38 MAPK and induction of HO-1. Thus, DMF might reduce ASMC and airway remodelling processes in asthma.  相似文献   

19.
In the present study, we examined downstream signaling events that followed exposure of cultured rat myometrial cells to platelet-derived growth factor (PDGF) and their effect on cell proliferation. PDGF-BB induced tyrosine phosphorylation of PDGF-beta receptors and increased inositol trisphosphate production via the tyrosine phosphorylation of phospholipase (PL)C-gamma 1. PDGF-BB also increased cAMP synthesis. This increase was potentiated by forskolin and reduced by indomethacin, a cyclooxygenase inhibitor, reflecting a Gs protein-mediated process via prostaglandin biosynthesis. The prostaglandin produced by PDGF was characterized as prostacyclin (PGI(2)). PDGF-BB increased arachidonic acid (AA) release, which, similarly to cAMP accumulation, was abolished in the presence of AACOCF3, a cytosolic PLA(2) inhibitor, and in the absence of Ca(2+). U-73122, a potent inhibitor of PLC activity, blocked both the production of inositol phosphates and the AA release triggered by PDGF-BB. Extracellular signal-regulated kinases (ERKs) 1 and 2 are expressed in myometrial cells, and PDGF-BB selectively activated ERK2. PD98059, an inhibitor of the ERK-activating kinase, blocked PDGF-BB-mediated ERK2 activation, AA release, and cAMP production. The results demonstrate that PDGF-BB stimulated cAMP formation through both PLC activation and ERK-dependent AA release and PGI(2) biosynthesis. PDGF-BB also increased cell proliferation and [(3)H]thymidine incorporation. This was abolished by PD98059, demonstrating that the ERK cascade is required for the mitogenic effect of PDGF-BB. Forskolin, which potentiated the cAMP response to PDGF-BB, attenuated both DNA synthesis and ERK activation triggered by PDGF-BB, suggesting the presence of a negative feedback regulation.  相似文献   

20.
Platelet-derived growth factor (PDGF) exists as a homodimer or a heterodimer comprising either PDGF-A or PDGF-B subunits, and each isoform occurs in various tissues, including bone. Although the stimulatory effects of PDGF-BB have been studied in cultures of bone cells and intact bone fragments, the influence of other isoforms that may arise locally or systematically in vivo, has not been reported. Therefore recombinant human PDGF-BB, PDGF-AB, and PDGF-AA were evaluated in osteoblast-enriched cultures from fetal rat bone. Within 24 hours these factors produced a graded response in bone cell DNA and protein synthesis, with half-maximal effects at approximately 0.6, 2.1, and 4.8 nM PDGF-BB, PDGF-AB, and PDGF-AA, respectively. Increases in collagen and noncollagen protein synthesis were abrogated when DNA synthesis was blocked with hydroxyurea. Furthermore, each factor reduced alkaline phosphatase activity, PDGF-BB being the most inhibitory. Binding studies with 125I-PDGF-BB or 125I-PDGF-AA and each unlabeled PDGF isoform produced discrete ligand binding and displacement patterns: 125I-PDGF-BB binding was preferentially displaced by PDGF-BB (Ki approximately 0.7 nM), less by PDGF-AB (Ki approximately 2.3 nM) and poorly by PDGF-AA. In contrast, 125I-PDGF-AA binding was measurably reduced by PDGF-AA (Ki approximately 4.0 nM), but was more effectively displaced by PDGF-BB or PDGF-AB (each with Ki approximately 0.7 nM). These studies indicate that each PDGF isoform produces biochemical effects proportional to binding site occupancy and suggest that receptors that favor PDGF-B subunit binding preferentially mediate these results in osteoblast-enriched bone cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号