共查询到20条相似文献,搜索用时 91 毫秒
1.
A systematic search for viral infection was performed in the isolated Kerguelen Islands, using a range of polyvalent genus-specific PCR assays. Barley yellow dwarf virus (BYDV) was detected in both introduced and native grasses such as Poa cookii. The geographical distribution of BYDV and its prevalence in P. cookii were analyzed using samples collected from various sites of the archipelago. We estimate the average prevalence of BYDV to be 24.9% in P. cookii, with significant variability between sites. BYDV genetic diversity was assessed using sequence information from two genomic regions: the P3 open reading frame (ORF) (encoding the coat protein) and the hypervariable P6 ORF region. The phylogenetic analysis in the P3 region showed that BYDV sequences segregate into three major lineages, the most frequent of which (Ker-I cluster) showed close homology with BYDV-PAV-I isolates and had very low intra-lineage diversity (0.6%). A similarly low diversity was also recorded in the hypervariable P6 region, suggesting that Ker-I isolates derive from the recent introduction of BYDV-PAV-I. Divergence time estimation suggests that BYDV-PAV-I was likely introduced in the Kerguelen environment at the same time frame as its aphid vector, Rhopalosiphum padi, whose distribution shows good overlap with that of BYDV-Ker-I. The two other lineages show more than 22% amino acid divergence in the P3 region with other known species in the BYDV species complex, indicating that they represent distinct BYDV species. Using species-specific amplification primers, the distribution of these novel species was analyzed. The high prevalence of BYDV on native Poaceae and the presence of the vector R. padi, raises the question of its impact on the vulnerable plant communities of this remote ecosystem. 相似文献
2.
The content of Barley yellow dwarf virus (BYDV) in roots and leaves of barley seedling plants differing in their level of resistance was assessed by quantitative ELISA 1–42 days after inoculation with the strain of BYDV (PAV). High virus accumulation in roots and low concentration in leaves was characteristic of the period 9–15 days after inoculation. In leaves, the differences in virus content between resistant and susceptible genotypes became significant after 15 days and resistance to virus accumulation was better expressed 30–39 days after inoculation. Roots of resistant materials exhibited evident retardation of virus accumulation and the greatest difference in virus content between resistant and susceptible plants was detected 9 days after inoculation. By these criteria, the selected winter and spring barley cultivars and lines (in total 44 materials) fell in to five groups according to field reactions and the presence or absence of the Yd2 resistance gene. There were highly significant and positive relations between ELISA values and 5‐year field data on symptomatic reactions and grain‐yield reductions due to infection. Using the described method, resistant and moderately resistant genotypes (both Yd2 and non‐Yd2) were significantly differentiated from susceptible genotypes. The possible use of this method in screening for BYDV resistance is discussed. 相似文献
3.
Live trapping at 0.9 m of alate aphid vectors of barley yellow dwarf virus (BYDV) at Aberystwyth from 1970 to 1979 showed that ten species transmitted the virus to oat test plants. Conversion of percentage infective at 0.9 m to numbers infective based on continuous trapping at 1.2 m showed Rhopalosiphum padi and R. insertum to be the main vector species in most years, whilst Metopolophium dirhodum and Sitobion auenae were normally of minor importance. The data obtained suggest that epiphytotics of BYDV in autumn-sown cereals were caused by numerous infective vectors flying late in the year and transmitting severe strains of the virus. Evidence is presented that gynoparae and males of R. padi are involved in the autumn spread of BYDV and that three further aphid species, Anoecia corni, Metopolophium albidum and M. frisicum are BYDV vectors. The use of live and continuous trapping techniques in forecasting BYDV epiphytotics is discussed. 相似文献
4.
The complete nucleotide sequence and its organization of the genome of Barley yellow dwarf virus-GAV 总被引:5,自引:0,他引:5
JIN Zhibo WANG Xifeng CHANG Shengjun & ZHOU Guanghe State Key Laboratory for Biology of Plant Diseases Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sci-ences Beijing China 《中国科学:生命科学英文版》2004,47(2):175-182
The Barley yellow dwarf disease (BYD) was firstly recognized as an aphid transmitted virus disease by Oswald and Houston[1] in 1951. Now, Barley yel-low dwarf viruses (BYDVs) belong to members of the plant virus family Luteoviridae. They are phloem- limited and obligately transmitted in the circula-tive/persistent manner by several species of cereal aphids and can cause significant economic losses worldwide because of damage to barley, wheat, and oats. In China, BYDVs cause mainly yello… 相似文献
5.
转病毒来源发夹RNA小麦表现对大麦黄矮病毒的抗性 总被引:3,自引:0,他引:3
将大麦黄矮病毒GPV株系的复制酶基因片段和CP基因片段构建成可在植物细胞内表达含有双链复制酶RNA(茎)和反义CP RNA(环)的复合发夹RNA结构, 希望能够诱发植物体针对病毒的RNA干扰作用, 从而达到抗病毒目的。利用基因枪法将该结构导入小麦幼胚愈伤组织细胞后, 通过在幼苗再生阶段进行以叶片为模板的快速PCR来加速阳性植株的筛选过程, 最终共获得基因组整合有外源基因的小麦再生植株21株。对再生植株接种不同剂量的病毒, 其中9株对BYDV-GPV有低度抗性, 表现在低接毒量时无症状, 接毒量提高时发病且严重; 6株具中度抗性, 表现在低接毒量时无症状, 接毒量提高时局部有不严重症状; 6株具高度抗性, 两种情况下均无症状。抗性实验结果表明, hpRNA介导对BYDV的抗性可能受到BYDV含量的影响, 具有剂量效应的特点。 相似文献
6.
The complete nucleotide sequence and its organization of the genome of Barley yellow dwarf virus-GAV
The complete nucleotide sequence of genomic RNA of BYDV-GAV was determined. It comprised 5685 nucleotides and contained six open reading frames and four un-translated regions. The size and organization of BYDV-GAV genome were similar to those of BYDV PAV-aus. The nucleotide and deduced amino acid sequences of the six ORFs were aligned and compared with those of other luteoviruses. The results showed that there was a high degree of identity between BYDV-GAV and MAV-PS1 in all ORFs except ORF5 and ORF6, which had only 87.4% and 70.2% identities respectively. The reported genomic nucleotide sequence of MAV was shorter than that of BYDV-GAV, but the comparison of the genomic nucleotide sequences for MAV-PS1 and GAV showed 90.4% sequence identity for the same region of the genome. According to the level of sequence similarities, BYDV-GAV should be closely related to BYDV-MAV. 相似文献
7.
E. Schliephake A. Habekuss M. Scholz F. Ordon 《Entomologia Experimentalis et Applicata》2013,146(3):347-356
A Hordeum bulbosum L. (Poaceae) clone A17 was identified, which showed complete resistance to Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). It was not possible to infect plants of A17 with BYDV‐PAV, ‐MAV, or with CYDV‐RPV by the aphid vectors Rhopalosiphum padi (L.) or Sitobion avenae (Fabricius) (both Hemiptera: Aphididae). Plants of the A17 clone and of the BYDV‐susceptible H. bulbosum clone A21 revealed some resistance to R. padi compared to the susceptible winter barley cultivar Rubina [Hordeum vulgare L. (Poaceae)]. The development time to the imago was longer and the number of nymphs was reduced on both clones compared with cv. Rubina. The probing and feeding behaviour of R. padi on plants of the H. bulbosum clones was studied over 12 h and compared with that on plants of the barley cv. Rubina. Principal component analysis of the results of the feeding behaviour revealed a clear separation of the H. bulbosum genotypes from Rubina. On H. bulbosum the number of penetrations was higher but total feeding time was shorter. Significant differences were mainly found in the phloem feeding parameters for plants of both clones in comparison to Rubina, with the virus resistant A17 clone having the strongest effect and the susceptible A21 clone being intermediate. Most significant differences were found in parameters of the phloem salivation phase. On A17, an average of less than one (0.9) E1 phase per plant was observed (3.3 on A21 and 5.7 on Rubina) and its duration was reduced to less than 1 min (0.9 min) in comparison to 2.4 min on A21 and 5.7 min on Rubina. Also, the phloem feeding (E2) phase was clearly reduced on A17 plants with 0.5 E2 phases per test and a mean duration of 1.1 min in contrast with 2.9 and 3.5 E2 phases per test and 34.1 and 421.3 min for A21 and Rubina, respectively. These results point towards a phloem‐localized factor for aphid resistance in H. bulbosum, i.e., on A17 plants the phloem salivation time is too short for a successful infection by BYDV leading to vector resistance. 相似文献
8.
R. T. PLUMB 《The Annals of applied biology》1976,83(1):53-59
Suction traps operating at low level (1 5 m) were used to catch live alate Rhopalosiphum padi, Macrosiphum (Sitobion) avenae and Metopolophium dirhodum which were tested for transmission of barley yellow dwarf virus (BYDV). The first species caught and infective was R. padi, followed by M. (S.) avenae infective some 2–3 wk later and M. dirhodum 3–4 wk later still. Never more than 11-5% of the annual catch of any species transmitted BYDV and the proportion fluctuated from week to week and between seasons in different years. The relative abundance of infective vectors of ths three species varied; annual numbers of infective M. (S.) avenae and M. dirhodum varied inversely with infective R. padi, the latter also usually transmitted severer virus. The results of the infectivity tests have been compared with the catches of these aphids by the Rothamsted Insect Survey and show that numbers of alate aphids do not necessarily indicate the likely incidence of BYDV. 相似文献
9.
Barley yellow dwarf virus, wheat, and Sitobion avenae: a case of trilateral interactions 总被引:2,自引:0,他引:2
M. Fiebig H.-M. Poehling & C. Borgemeister 《Entomologia Experimentalis et Applicata》2004,110(1):11-21
We analysed interactions in the system of two Barley Yellow Dwarf Virus (BYDV) strains (MAV and PAV), and wheat (cv. Tinos) as host plant for the virus, and the cereal aphid Sitobion avenae (F.) as vector, in particular whether or not infection by the virus might alter host plant suitability in favour of vector development. By measuring the amino acid and sugar content in the phloem sap of infected and non‐infected wheat plants we found a significant reduction in the concentration of the total amount of amino acids on BYDV‐infected plants. Qualitative and quantitative analysis of honeydew and honeydew excretion indicated a lower efficiency of phloem sap utilisation by S. avenae on infected plants. In addition, S. avenae excreted less honeydew on infected plants. Both BYDV strains significantly affected aphid development by a reduction in the intrinsic rate of natural increase. Hence, infection by the virus reduced the host suitability in terms of aphid population growth potential on BYDV‐infected plants. However, more alate morphs developed on virus‐infected plants. These findings are discussed in relation to the population dynamics of S. avenae, and, as a consequence, the spread of BYDV. 相似文献
10.
Nadir Naveed Siddiqui Muhammad Ilyas Shahid Mansoor Abid Azhar Muhammad Saeed 《Journal of Phytopathology》2012,160(1):13-18
Barley yellow dwarf virus (BYDVs) is an emerging threat for wheat and may seriously threaten its production, especially as climate change may result in increased infestation by aphids, the insect vectors of the virus. To assess the possibility of using pathogen‐derived resistance against the virus, the genetic diversity of BYDVs originating from different wheat‐growing areas of Pakistan where its incidence has been higher was investigated. Wheat samples with suspected symptoms of BYDVs were screened for the presence of Barley yellow dwarf and Cereal yellow dwarf viruses (B/CYDVs) subgroup 1 (Barley yellow dwarf virus‐PAV, BYDV‐MAV, BYDV‐SGV) and subgroup II (BYDV‐RPV, CYDV‐RPV, BYDV‐GPV) by PCR using basic multiplex oligonucleotides designed on coat protein (CP) of the virus. Of 37 samples tested, 13 were positive for BYDV subgroup I and only one sample was positive for BYDV subgroup II. Samples positive for subgroup I were further tested by PCR, and results showed that 10 samples were positive for BYDV‐PAV and three for BYDV‐MAV. DNA sequences of CP region of nine isolates (BYDV‐PAV) were determined and compared with available sequences in databases. Sequence analysis showed that three isolates (from Fatehjang, Nowshera and Attock districts) had maximum identity (92.8–94.6%) to BYDV‐PAS, and six isolates (from Peshawar, Islamabad Swabi and Faisalabad districts) had maximum identity (99.3–99.7%) to BYDV‐PAV. Thus BYDV‐PAV species may be dominant in northern wheat‐growing areas of Pakistan. The conserved nature of the BYDVs suggests that pathogen‐derived resistance strategies targeting the coat protein of the virus are likely to provide protection under field conditions. 相似文献
11.
P.G. Coceano S. Peressini G.L. Bianchi & P. Caciagli 《The Annals of applied biology》2009,155(1):37-50
Migrations of aphid vectors of Barley yellow dwarf viruses (BYDV) were monitored using a Rothamsted Insect Survey suction trap in Friuli-Venezia Giulia (north-eastern Italy). Catches from 1983 to 2002 were studied for trends, correlations of total catches of each year with those of previous years, correlations between the autumn and the spring + summer catches of the same year and between spring + summer catches of one year with catches of the previous autumn. Infectivity of autumn alates was studied using biological tests, and infectivity indexes were calculated for all vector species and for Rhopalosiphum padi alone. Colonisation of barley and proportion of infected plants were checked in a field close to the suction trap from 1992 to 2002 and related to trap catches. Catches were also correlated to acreage dedicated to cereal and fodder crops in the region. During the 20 years, 15 BYDV vector species were caught in the trap, but only five species were found consistently colonising barley plants during autumn. R. padi was the most numerous species in catches, while Sitobion avenae was the predominant colonising species in the barley field. Relatively to R. padi , S. avenae colonies were about six times more numerous than expected from catches. The yearly abundance of catches of most species did not change significantly during the 20 years, with a few exceptions, significantly correlated to changes in the acreage dedicated to cereal and fodder crops. There was a significant decrease of the autumn catches of both R. padi and the total of BYDV vectors. 相似文献
12.
Barley yellow dwarf virus (BYDV) causes significant losses in yield and in overwintering ability of winter cereals. Mechanisms by which the physiology of plants is affected by the virus are not clear. To see how carbohydrates in the crown of winter cereals were affected by BYDV, fructan isomers of degree of polymerization (DP) 3–5, fructan DP>6 and the simple sugars, glucose, fructose and sucrose, were measured before and during cold hardening in three oat ( Avena sativa L.) cultivars, 'Wintok', 'Coast Black' and 'Fulghum'. On a fresh weight basis fructan DP>6 decreased by 50% in infected 'Wintok' and 'Coast Black' and by 25% in 'Fulghum'. Two DP3, one DP4 and one DP5 isomer were significantly higher than non-infected controls. The percentages of simple sugars in infected crowns were significantly higher than controls in all three cultivars in every week except the first week of hardening. Crude enzyme extracts from BYDV infected plants incubated with sucrose suggested higher invertase and lower sucrose-sucrosyl transferase activity. When incubated with 1-kestose and neokestin, no significant difference was found in fructose fructosyl transferase or in hydrolase activity. The activity of unidentified enzymes catalysing the synthesis of larger (DP>5) fructan was altered by BYDV. The decrease of carbohydrates in the crown induced indirectly by BYDV may alter the plant's capacity to regenerate tillers in the spring. The ability of plants to prevent or tolerate carbohydrate fluctuations induced by BYDV infection may be an important genetically regulated characteristic for developing virus-resistant cultivars. 相似文献
13.
14.
Properties and isolates of barley yellow dwarf virus 总被引:2,自引:0,他引:2
R. T. Plumb 《The Annals of applied biology》1974,77(1):87-91
Barley yellow dwarf virus is persistently transmitted by a number of aphid species of which three, Rhopalosiphum padi, Sitobion avenae and Metopolophium dirhodum, are common in most years. Other aphids may be locally important. Isolates of the virus differ in their virulence and geographical distribution and are not transmitted equally well by all aphid vectors. Isolates with similar properties are grouped into strains according to their transmission by vectors and their severity. Changes in strain and aphid occurrence from year to year alter the incidence of virus and its effect on yield. These changes emphasize the need for detailed knowledge of cereal aphid biology and epidemiology of BYDV before effective control can be used. 相似文献
15.
Barley yellow dwarf is the most damaging virus-caused disease in bread wheat (Triticum aestivum L.). A resistant line, SW335.1.2-13-11-1-5 (2n = 47), derived from a cross of T. aestivum x Lophopyrum ponticum was characterized by meiotic chromosome pairing, by in situ DNA hybridization and by expression of molecular markers to determine its chromosome constitution. All progeny of this line had three pairs of L. ponticum chromosomes from homoeologous chromosome groups 3, 5, and 6 and the 2n = 47 progeny had an additional L. ponticum monosome. The pairs from groups 3 and 6 were in the added state, while the group 5 pair was substituted for wheat chromosome 5D. Several wheat-wheat translocations with respect to the parental wheat genotype occurred in this line, presumably owing to the promotion of homoeologous chromosome pairing by L. ponticum chromosomes. It was hypothesized that homoeologous recombination results in homoeologous duplication-deletions in wheat chromosomes. An aberrant 3:1 disjunction creates the potential at each meiosis for replacement of these wheat chromosomes by homoeologous L. ponticum chromosomes. Wheat chromosomes 3A and 6A appeared to be in intermediate stages of this substitution process. 相似文献
16.
Hadi BA Flanders KL Bowen KI Murphy JF Halbert SE 《Journal of economic entomology》2011,104(4):1167-1173
Yellow dwarf is a major disease problem of wheat, Triticum aestivum L., in Alabama and is estimated to cause yield loss of 21-42 bu/acre. The disease is caused by a complex of viruses comprising several virus species, including Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. Several other strains have not yet been classified into a specific species. The viruses are transmitted exclusively by aphids (Hemiptera:Aphididae). Between the 2005 and 2008 winter wheat seasons, aphids were surveyed in the beginning of each planting season in several wheat plots in Alabama and western Florida Collected aphids were identified and bioassayed for their yellow dwarf virus infectivity. This survey program was designed to identify the aphid species that serve as fall vectors of yellow dwarf virus into winter wheat plantings. From 2005 to 2008, bird cherry-oat aphid, Rhopalosiphum padi (L.); rice root aphid, Rhopalosiphum rufiabdominale (Sasaki); and greenbug, Schizaphis graminum (Rondani), were found consistently between October and December. The species of aphids and their timing of appearance in wheat plots were consistent with flight data collected in North Alabama between 1996 and 1999. Both R. padi and R. rufiabdominale were found to carry and transmit Barley yellow dwarf virus-PAV and Cereal yellow dwarf virus-RPV. The number of collected aphids and proportion of viruliferous aphids were low. Although this study has shown that both aphids are involved with introduction of yellow dwarf virus to winter wheat in Alabama and western Florida, no conclusions can be made as to which species may be the most important vector of yellow dwarf virus in the region. 相似文献
17.
The phylogeographic structure of 15 genera of Amazonian marsupials and rodents is summarized based on comparative sequence of the mitochondrial cytochrome b gene. The data are limited in geographical coverage, with samples widely scattered throughout Amazonia from the base of the Andes in Peru to the Guianan coast and eastern Brazil. We use this approach to define species boundaries, based minimally on the principle of reciprocal monophyly, in conjunction with morphological or other genetic discontinuities. The taxa so defined are older than previously appreciated, with many lineages dating from 1 to more than 3 Myr, and thus apparently predating the early Pleistocene. We relate patterns of concordant geographical shifts with underlying tectonic history and to current positions of major rivers. Finally, we provide comments on the utility of these data and patterns to conservation, articulating a need to incorporate phylogeographic information as part of the rationale in establishing conservation priorities at the organismal and geographical area levels. 相似文献
18.
Surget-Groba Y Heulin B Guillaume CP Thorpe RS Kupriyanova L Vogrin N Maslak R Mazzotti S Venczel M Ghira I Odierna G Leontyeva O Monney JC Smith N 《Molecular phylogenetics and evolution》2001,18(3):449-459
The lacertid lizard Lacerta vivipara is one of the few squamate species with two reproductive modes. We present the intraspecific phylogeny obtained from neighbor-joining and maximum-parsimony analyses of the mtDNA cytochrome b sequences for 15 individuals from Slovenian oviparous populations, 34 individuals from western oviparous populations of southern France and northern Spain, 92 specimens from European and Russian viviparous populations, and 3 specimens of the viviparous subspecies L. v. pannonica. The phylogeny indicates that the evolutionary transition from oviparity to viviparity probably occurred once in L. vivipara. The western oviparous group from Spain and southern France is phylogenetically most closely related to the viviparous clade. However, the biarmed W chromosome characterizing the western viviparous populations is an apomorphic character, whereas the uniarmed W chromosome, existing both in the western oviparous populations and in the geographically distant eastern viviparous populations, is a plesiomorphic character. This suggests an eastern origin of viviparity. Various estimates suggest that the oviparous and viviparous clades of L. vivipara split during the Pleistocene. Our results are discussed in the framework of general evolutionary models: the concept of an oviparity-viviparity continuum in squamates, the cold climate model of selection for viviparity in squamates, and the contraction-expansion of ranges in the Pleistocene resulting in allopatric differentiation. 相似文献
19.
Sequence and organization of barley yellow dwarf virus genomic RNA. 总被引:23,自引:5,他引:18
The nucleotide sequence of the genomic RNA of barley yellow dwarf virus, PAV serotype was determined, except for the 5'-terminal base, and its genome organization deduced. The 5,677 nucleotide genome contains five large open reading frames (ORFs). The genes for the coat protein (1) and the putative viral RNA-dependent RNA polymerase were identified. The latter shows a striking degree of similarity to that of carnation mottle virus (CarMV). By comparison with corona- and retrovirus RNAs, it is proposed that a translational frameshift is involved in expression of the polymerase. An ORF encoding an Mr 49,797 protein (50K ORF) may be translated by in-frame readthrough of the coat protein stop codon. The coat protein, an overlapping 17K ORF, and a 3'6.7K ORF are likely to be expressed via subgenomic mRNAs. 相似文献