首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Data are reviewed that are consistent with the following working hypothesis that proposes a novel mechanism regulating insulin sensitivity, which when nonfunctional, leads to severe insulin resistance. Postprandial elevation in insulin levels activates a hepatic parasympathetic reflex release of a putative hepatic insulin-sensitizing substance (HISS), which activates glucose uptake at skeletal muscle. Insulin causes HISS release in fed but not fasted animals. The reflex is mediated by acetylcholine and involves release of nitric oxide in the liver. Interruption of the release of HISS is achieved by surgical denervation of the anterior hepatic nerve plexus, muscarinic receptor blockade, or nitric oxide synthase antagonism and leads to immediate severe insulin resistance. The nitric oxide donor, SIN-1, reverses L-NAME-induced insulin resistance. Denervation-induced insulin resistance is reversed by intraportal but not intravenous administration of acetylcholine or SIN-1. Liver disease is often associated with insulin resistance; the bile duct ligation model of liver disease results in parasympathetic neuropathy and insulin resistance that is reversed by intraportal acetylcholine. Possible relevance of this HISS-dependent control of insulin action to insulin resistance in diabetes, liver disease, and obesity is discussed.  相似文献   

2.
Insulin sensitivity regulated by feeding in the conscious unrestrained rat   总被引:1,自引:0,他引:1  
Hepatic insulin sensitizing substance (HISS), a putative hormone released from the liver in response to insulin in fed animals, accounts for 50-60% of insulin action. HISS release is regulated by permissive control of the hepatic parasympathetic nerves. The objectives were to develop the rapid insulin sensitivity test (RIST) in conscious rats, and to assess the effects of anesthesia, atropine, feeding, and fasting on insulin action. The RIST index, expressed as milligrams glucose per kilogram body weight required to maintain euglycemia after a 50 mU/kg bolus of insulin, was similar in conscious and anesthetized rats (238.6+/-42.5 vs. 225.3+/-30.4 mg/kg). Atropine produced a 56% inhibition of insulin action in fed rats. After a 24 h fast, full HISS-dependent insulin resistance had developed as shown by a low RIST index that was not reduced further by atropine. Fasting caused a 10.5% decrease in insulin action per hour over six hours. HISS-dependent insulin resistance in 24-h fasted rats was reversed 4 h after re-feeding (90.9+/-12.3 vs. 204.5+/-30.5 mg/kg). We conclude that HISS-dependent and HISS-independent insulin action, as assessed by the RIST, is similar in conscious and pentobarbital-anesthetized rats. Pharmacological blockade of HISS-dependent insulin action and physiological regulation of HISS action by feeding-fasting is confirmed. Re-feeding fasted rats reversed HISS-dependent insulin resistance. Merits of use of the RIST in conscious versus anesthetized rats are discussed.  相似文献   

3.
The objective was to compare the ability of the rapid insulin sensitivity test (RIST), the hyperinsulinemic euglycemic clamp (HIEC), and the insulin tolerance test (ITT) to detect hepatic insulin sensitizing substance (HISS) dependent insulin action. HISS action was augmented by feeding and inhibited by fasting, blockade of hepatic nitric oxide synthase, or blockade of hepatic muscarinic cholinergic receptors. A significant correlation was found between the RIST index and ITT nadir (r2 = 0.84) but not between the glucose infusion rate of the HIEC and RIST index. There was, however, a relationship between the RIST index and the initial response during the HIEC. Use of the HIEC resulted in HISS-dependent insulin resistance in both conscious and anesthetized animals. We concluded that since the RIST and ITT were comparable in quantifying both HISS-dependent and HISS-independent insulin action, the RIST was validated against this standard. The observation that the HIEC is capable of detecting HISS action in the first rising slope of the test but not at the end of the test and that HISS release is fully blocked after the conclusion of the HIEC raises concerns about the use of the commonly used HIEC.  相似文献   

4.
Free radicals are involved in the pathogenesis of acute liver injury induced by thioacetamide (TAA). We investigated the effects of S-adenosylmethionine (SAMe) combined with/without vitamins C and E on TAA-induced acute liver injury in rats. TAA was given intraperitoneally (200 mg kg-1). Antioxidant treatments (SAMe, 25 mg kg-1; vitamin C, 100 mg kg-1; vitamin E, 200 mg kg-1, intraperitoneal) were given 1 h later. Liver histology, enzymology, and ability to release hepatic insulin-sensitizing substance (HISS) were assessed. TAA caused liver tissue injury, increased liver enzymes, and decreased insulin sensitivity (p<0.01). Blockade of HISS release by atropine did not further decrease insulin sensitivity in rats with TAA insult, indicating that the decrease in insulin sensitivity was HISS dependent. Treatment with SAMe alone or vitamins C+E slightly improved liver histology but not the changes in liver enzymes and insulin sensitivity. Combined treatment with SAMe plus vitamins C+E greatly protected the liver from tissue injury, the increase in liver enzymes, and the decrease in insulin sensitivity. In conclusion, acute liver injury causes HISS-dependent insulin resistance (HDIR). There are synergistic antioxidative effects among the antioxidants, SAMe and vitamins C and E, that protect the liver from TAA-induced HDIR, suggesting that antioxidant treatment may best be done using a balanced "cocktail."  相似文献   

5.
The hepatic parasympathetic nerves and hepatic nitric oxide synthase (NOS) are involved in the secretion of a hepatic insulin sensitizing substance (HISS), which mediates peripheral insulin sensitivity. We tested whether binding of ACh to hepatic muscarinic receptors is an upstream event to the synthesis of nitric oxide (NO), which, along with the activation of hepatic guanylate cyclase (GC), permits HISS release. Male Wistar rats (8-9 wk) were anesthetized with pentobarbital sodium (65 mg/kg). Insulin sensitivity was assessed using a euglycemic clamp [the rapid insulin sensitivity test (RIST)]. HISS inhibition was induced by antagonism of muscarinic receptors (atropine, 3 mg/kg i.v.) or by blockade of NOS [NG-nitro-L-arginine methyl ester (L-NAME), 1 mg/kg intraportally (i.p.v.)]. After the blockade, HISS action was tentatively restored using a NOdonor [3-morpholynosydnonimine (SIN-1), 5-10 mg/kg i.p.v.] or ACh (2.5-5 microg.kg(-1).min(-1) .i.p.v.). SIN-1 (10 mg/kg) reversed the inhibition caused by atropine (RIST postatropine 137.7 +/- 8.3 mg glucose/kg; reversed to 288.3 +/- 15.5 mg glucose/kg, n = 6) and by L-NAME (RIST post-L-NAME 152.2 +/- 21.3 mg glucose/kg; reversed to 321.7 +/- 44.7 mg glucose/kg, n = 5). ACh did not reverse HISS inhibition induced by L-NAME. The role of GC in HISS release was assessed using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 nmol/kg i.p.v.), a GC inhibitor that decreased HISS action (control RIST 237.6 +/- 18.6 mg glucose/kg; RIST post-ODQ 111.7 +/- 6.2 mg glucose/kg, n = 5). We propose that hepatic parasympathetic nerves release ACh, leading to hepatic NO synthesis, which activates GC, triggering HISS action.  相似文献   

6.
Insulin-like growth factor-1 (IGF-1) has many insulin-like activities, including stimulation of glucose uptake in skeletal muscle. However, those with diabetes or chronic liver disease are insulin resistant but show a normal hypoglycemic response to IGF-1. We have previously shown that insulin sensitivity depends on a hepatic parasympathetic reflex release of a hormone from the liver. The hypothesis was tested that insulin action, but not IGF-1 action, is dependent on the hepatic parasympathetic reflex. Glucose disposal in response to three doses of IGF-1 (25, 100, 200 microg/kg) was determined in rats. IGF-1 at 200 microg/kg had similar effect on glucose disposal as did 50 mU/kg of insulin. Interruption of the hepatic parasympathetic reflex either by surgical ablation of the anterior nerve plexus or by atropine (1.0 mg/kg) resulted in insulin, but not IGF-1, resistance. Sixteen hours of fasting resulted in insulin, but not IGF-1, resistance. In conclusion, insulin, but not IGF-1, triggers the hepatic parasympathetic dependent release of a putative hepatic insulin sensitizing substance (HISS) that stimulates glucose uptake in skeletal muscle.  相似文献   

7.
The effect of refeeding on the expression of Ca2+-binding protein regucalcin mRNA in the liver of fasted rats was investigated. When rats were fasted overnight, the hepatic regucalcin mRNA level was reduced about 70% of that in feeding rats. Refeeding produced a remarkable elevation of hepatic regucalcin mRNA level (about 150–170% of fasted rats). Liver regucalcin concentration was appreciably increased by refeeding, although it was not altered by fasting. The oral administration of glucose (2 g/kg body weight) to fasted rats caused a significant increase in hepatic regucalcin mRNA level. Moreover, hepatic regucalcin mRNA level was clearly elevated by a single subcutaneous administration of insulin (10 and 100 U/kg) to fasted rats. The hormonal effect was not further enhanced by the simultaneous administration of calcium chloride (250 mg Ca/kg) to fasted rats, although calcium administration stimulated regucalcin mRNA expression in the liver. The present study suggests that the expression of hepatic regucalcin mRNA stimulated by refeeding is significantly involved in the action of insulin and/or calcium as stimulating factors.  相似文献   

8.
Young adult male rats were fasted for 3 days, then fed a glucose-rich diet, ad libitum. At the end of the fasting period, the specific activity of liver glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase was decreased to 60% of control (nonfasted) levels. After 24 to 72 h of refeeding, the specific activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase increased seven- and twofold, respectively. During the fasting period, the liver lysosome fragility increased, as judged by increased release of bound acid phosphatase and β-N-acetylglucosammidase activity during standard homogenization. Three hours after feeding a carbohydrate-rich diet, a further increase in liver lysosomal fragility was observed that returned to control values prior to the induction of the dehydrogenases. Similarly, the susceptibility of liver lysosomes from fasted rats to increased fragility by the intraperitoneal injection of glucose or galactose was also observed. Prior starvation was not a requisite for labilization of lysosomal membranes by injected glucose, but induction of the pentose phosphate shunt dehydrogenase was not observed.In a group of 6-week old male rats fed a commercial pellet diet throughout, the injection of insulin caused no change in liver lysosomal fragility, though hypoglycemia resulted. Similar animals made diabetic by treatment with Streptozotocin and diabetic rats given insulin, showed no change in liver lysosmal fragility based on the percentage of free to total activities of β-N-acetylglucosaminidase, β-glucuronidase, β-galactosidase, and Cathespin D. However, when adult female rats were fasted for 24 h, then injected with sufficient insulin to produce hypoglycemia, liver lysosomal fragility, based on the release of β-N-acetylglucosaminidase during homogenization, increased nearly threefold. These studies demonstrate that stimulated lysosomal fragility can be initiated by refeeding fasted animals a carbohydrate-rich diet, by intraperitoneal injections of fasted rats with glucose or galactose, or by administering insulin alone to fasted rats. However, hyperglycemia induced by diabetogenic doses of Streptozotocin, or hypoglycemia induced in well-fed animals by insulin injection failed to elicit an enhanced liver lysosomal fragility. Whether induction of the enzymes of lipogenesis by rat liver is dependent upon a prior lysosomal membrane labilization remains to be determined.  相似文献   

9.
Insulin causes the release of the hepatic insulin-sensitizing substance (HISS) from the liver. Hepatic parasympathetic nerves play a permissive role in the release of HISS. HISS-dependent insulin resistance (HDIR) occurs in the absence of HISS. Fetal ethanol exposure has been shown to cause dose-dependent HDIR in adult male rat offspring. Since female offspring are more severely affected by in utero ethanol toxicity, we hypothesized that fetal alcohol exposure causes higher incidence and more severe HDIR in adult female offspring. Adult female rat offspring prenatally exposed to different concentrations of ethanol (0%, 15%, and 20%) were tested for insulin sensitivity using the rapid insulin sensitivity test (RIST). The RIST index was significantly reduced in the 15% (134.1 +/- 16.1 mg/kg) and the 20% (98.7 +/- 9.7 mg/kg) group compared with the 0% (220.9 +/- 27.6 mg/kg) group. Administration of atropine produced significant additional HDIR in the 15% group (82.9 +/- 14.5 mg/kg) but not the 20% group (83.8 +/- 20.5 mg/kg) indicating complete HDIR had been produced in this group, contrary to the adult male offspring in a previous study. The results are consistent with the hypothesis that adult-female offspring are more severely affected by in utero ethanol exposure compared with adult-male offspring.  相似文献   

10.
Hepatic insulin sensitizing substance (HISS) has been shown to account for 55% of the action of insulin in the fed state. HISS blockade leads to HISS-dependent insulin resistance (HDIR). The objective of this study was to test the hypothesis that insulin resistance produced by hemorrhage was HDIR. Insulin sensitivity was measured using the rapid insulin sensitivity test (RIST), which can identify HISS-dependent and independent components. Hemorrhage was performed in anesthetized rats by removing blood to reduce mean arterial pressure to 50 mmHg. Subsequent to blood removal, a RIST was performed. The results show that hemorrhage caused complete HDIR as subsequent administration of atropine failed to further reduce insulin sensitivity. However, the post-hemorrhage RIST was reduced by 34% and not the anticipated 55%. The lesser reduction of the RIST index by hemorrhage was related to reduced apparent volume of distribution and clearance of insulin, since occlusion of the superior mesenteric artery, which caused a similar decrease in portal venous flow as did hemorrhage, resulted in a similar degree of reduction of insulin clearance. The response to administered insulin was confounded by the impact of reduced hepatic blood flow on insulin metabolism that resulted in an increase in the HISS independent (direct) action of injected insulin against a background of complete HDIR. HDIR represents a useful hormonal response to assure a hyperglycemic response to hemorrhage.  相似文献   

11.
Pre-clinical methods for the determination of insulin sensitivity   总被引:1,自引:0,他引:1  
We compared the hyperinsulinaemic euglycaemic glucose clamping (HEGC) procedure and the rapid insulin sensitivity test (RIST) to characterize insulin sensitivity in anaesthetized rats. The changes in insulin sensitivity were then supplemented with the direct measurement of insulin-stimulated glucose uptake using tissue accumulation of radioactive 2-deoxyglucose in skeletal muscle samples obtained from animals undergone either procedure. Studies of the recently described endogenous insulin sensitizer mechanism termed hepatic insulin sensitizing (HISS) mechanism, by the two methods yielded data for evaluation. The HISS mechanism is defined as an increase in tissue insulin sensitivity in response to post-prandial hepatic release of an undefined substance through a nitrergic pathway. For the HEGC method, insulin was infused to attain a stable plasma insulin immunoreactivity of 100 microU/ml determined by radioimmunoassay, whereas with the RIST method the HISS mechanism was activated by a 50 mg/kg i.v. insulin bolus. Euglycaemia was kept constant by means of glucose infusion. With the HEGC and the RIST methods, insulin sensitivity was defined as the average rate of glucose infusion and the amount of glucose/kg body weight/40 min (RIST index) infused to maintain euglycaemia and preinvestigation blood glucose level, respectively. During HEGC 16+/-4.2 mg/kg/min glucose was able to maintain euglycaemia, which decreased to 8+/-2.9 (p<0.05) after administration of 10 mg/kg NG-nitro-L-arginine methyl ester (L-NAME) (i.p.), a NO synthase inhibitor. Conversely, the RIST index decreased by 55+/-6.9% (p<0.05) after L-NAME. Similarly, 2-deoxyglucose uptake by the gastrocnemius muscle was decreased by 49.9+/-5.8 (p<0.05) and 52.3+/-7.4% (p<0.05) with the HEGC and the RIST methods, respectively. The results show that both the HEGC and the RIST methods supplemented with tissue radioactive 2-deoxyglucose uptake determinations are appropriate methods to characterize the alteration of insulin sensitivity in context of the HISS mechanism.  相似文献   

12.
Increasing studies have shown protective effects of intermittent hypoxia on brain injury and heart ischemia. However, the effect of intermittent hypoxia on blood glucose metabolism, especially in diabetic conditions, is rarely observed. The aim of this study was to investigate whether intermittent hypoxia influences blood glucose metabolism in type 1 diabetic rats. Streptozotocin-induced diabetic adult rats and age-matched control rats were treated with intermittent hypoxia (at an altitude of 3 km, 4 h per day for 3 weeks) or normoxia as control. Fasting blood glucose, body weight, plasma fructosamine, plasma insulin, homeostasis model assessment of insulin resistance (HOMA-IR), pancreas β-cell mass, and hepatic and soleus glycogen were measured. Compared with diabetic rats before treatment, the level of fasting blood glucose in diabetic rats after normoxic treatment was increased (19.88?±?5.69 mmol/L vs. 14.79?±?5.84 mmol/L, p?<?0.05), while it was not different in diabetic rats after hypoxic treatment (13.14?±?5.77 mmol/L vs. 14.79?±?5.84 mmol/L, p?>?0.05). Meanwhile, fasting blood glucose in diabetic rats after hypoxic treatment was also lower than that in diabetic rats after normoxic treatment (13.14 ± 5.77 mmol/L vs. 19.88 ± 5.69 mmol/L, p<0.05). Plasma fructosamine in diabetic rats receiving intermittent hypoxia was significantly lower than that in diabetic rats receiving normoxia (1.28?±?0.11 vs. 1.39?±?0.11, p?<?0.05), while there were no significant changes in body weight, plasma insulin and β-cell mass. HOMA-IR in diabetic rats after hypoxic treatment was also lower compared with diabetic rats after normoxic treatment (3.48?±?0.48 vs. 3.86?±?0.42, p?<?0.05). Moreover, intermittent hypoxia showed effect on the increase of soleus glycogen but not hepatic glycogen. We conclude that intermittent hypoxia maintains glycemia in streptozotocin-induced diabetic rats and its regulation on muscular glycogenesis may play a role in the underlying mechanism.  相似文献   

13.
The effects of intragastric feeding with glucose and of the administration of L-triiodothyronine (T3) on in vivo rates of hepatic lipogenesis were investigated in control (fed ad libitum on norrnal diet), diabetic (fed ad libitum on normal diet), fat-fed (fed ad libitum on high-fat diet), and starved (food removed for 48 h) rats. Two days of T3 treatment increased hepatic lipogenesis in control and fat-fed animals but not in the diabetic or starved animals, although increases in lipogenesis in diabetic animals were observed after 4 days of T3 treatment. Intragastric glucose feeding increased hepatic lipogenesis in the livers of control animals and T3-treated control animals. Such increases are mediated by an increase in the circulating insulin concentration, as increases are not observed in diabetic rats or T3-treated diabetic rats. Glucose feeding failed to increase hepatic lipogenesis in fat-fed rats or starved rats. Insulin injection together with glucose feeding increased lipogenesis in the fat-fed group but not the starved group; i.e., impaired insulin secretion following an oral glucose load may in part explain the lack of response in the fat-fed but not the starved animals. Marked increases in hepatic ]ipogenesis after glucose feeding were, however, observed if either the starved or the fat-fed animals were treated with T3, The physiological implications of these observations are discussed.  相似文献   

14.
Prolonged ethanol administration to rats increased the rates of glycerolipid synthesis from added [U-14C]palmitate in fasted hepatocytes; this increase was more than 2-fold in triglyceride synthesis. Prolonged ethanol administration to rats completely eliminated the acute ethanol-induced increase in triglyceride synthesis from palmitate in hepatocytes from fasted rats. This adaptive change occurred in a short initial period of about 10 days of ethanol feeding. In hepatocytes from fasted control rats, addition of ethanol produced a rapid and strong increase in the concentration of glycerol 3-phosphate. By contrast, this acute effect of ethanol disappeared in hepatocytes from fasted alcoholic rats after a prolonged--5 weeks--administration of ethanol in a liquid diet.  相似文献   

15.
Summary Liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were significantly decreased in both diabetic and fasted rats. Treatment of diabetic rats with insulin resulted in liver glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities that were significantly greater than controls. Insulin promoted an increase in food consumption that was blocked by adrenaline. Insulin, when administered together with adrenaline, restored hepatic glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenas activities of diabetic animals to control values, without altering food consumption. Brain glucose 6-phosphate dehydrogenase and phosphogluconate dehydrogenase activities were not significantly altered by either dietary restriction, diabetes or insulin treatment. These results demonstrate a dissociation between the action of insulin on hepatic glucose 6-phosphate dehydrogenase activity and its action to increase food intake.Abbreviations NADP+ oxidoreductase, EC 1.1.1.49 Glucose 6-P dehydrogenase, GPD, D-glucose-6-phosphate - NADP+ 2-oxidoreductase (decarboxylating), EC 1.1.1.44 phosphogluconate dehydrogenase, PGD, 6-phospho-D-gluconate  相似文献   

16.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

17.
In dogs after feeding increased plasma insulin concentration is positively related in converting the "fasted" pattern of electrical activity into the "fed" pattern. In sheep, the release of insulin induced by a perfusion of volatile fatty acids is accompanied by similar changes in the pattern of electrical activity. The results indicate that insulin release induced by nutrients plays a major role in the control of intestinal motility in both species.  相似文献   

18.
19.
Insulin is involved in multiple regulatory mechanisms, including body weight and food intake, and plays a critical role in metabolic disorders such as obesity and diabetes. An increasing body of evidence indicates that insulin is also involved in the modulation of olfactory function. The olfactory bulb (OB) contains the highest level of insulin and insulin receptors (IRs) in the brain. However, a role for insulin in odor detection and sniffing behavior remains to be elucidated. Using a behavioral paradigm based on conditioned olfactory aversion (COA) to isoamyl-acetate odor, we demonstrated that an intracerebroventricular (ICV) injection of 14 mU insulin acutely decreased olfactory detection of fasted rats to the level observed in satiated animals. In addition, whereas fasted animals demonstrated an increase in respiratory frequency upon food odor detection, this effect was absent in fasted animals receiving a 14 mU insulin ICV injection as well as in satiated animals. In parallel, we showed that the OB and plasma insulin levels were increased in satiated rats compared to fasted rats, and that a 14 mU insulin ICV injection elevated the OB insulin level of fasted rats to that of satiated rats. We further quantified insulin receptors (IRs) distribution and showed that IRs are preferentially expressed in the caudal and lateral parts of the main OB, with the highest labeling found in the mitral cells, the main OB projection neurons. Together, these data suggest that insulin acts on the OB network to modulate olfactory processing and demonstrate that olfactory function is under the control of signals involved in energy homeostasis regulation and feeding behaviors.  相似文献   

20.
We tested the hypothesis that hepatic nitric oxide (NO) and glutathione (GSH) are involved in the synthesis of a putative hormone referred to as hepatic insulin-sensitizing substance HISS. Insulin action was assessed in Wistar rats using the rapid insulin sensitivity test (RIST). Blockade of hepatic NO synthesis with N(G)-nitro-l-arginine methyl ester (l-NAME, 1.0 mg/kg intraportal) decreased insulin sensitivity by 45.1 +/- 2.1% compared with control (from 287.3 +/- 18.1 to 155.3 +/- 10.1 mg glucose/kg, P < 0.05). Insulin sensitivity was restored to 321.7 +/- 44.7 mg glucose/kg after administration of an NO donor, intraportal SIN-1 (5 mg/kg), which promotes GSH nitrosation, but not after intraportal sodium nitroprusside (20 nmol x kg(-1) x min(-1)), which does not nitrosate GSH. We depleted hepatic GSH using the GSH synthesis inhibitor l-buthionine-[S,R]-sulfoximine (BSO, 2 mmol/kg body wt ip for 20 days), which reduced insulin sensitivity by 39.1%. Insulin sensitivity after l-NAME was not significantly different between BSO- and sham-treated animals. SIN-1 did not reverse the insulin resistance induced by l-NAME in the BSO-treated group. These results support our hypothesis that NO and GSH are essential for insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号