首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Xu X  Liu C  Xu Z  Tzan K  Wang A  Rajagopalan S  Sun Q 《Life sciences》2012,90(25-26):1001-1009
AimsHigh-fat diet (HFD) is associated with adipose inflammation, which contributes to key components of metabolic abnormalities. The expanded adipose tissue mass associated with obesity is the result of hyperplasia and hypertrophy of adipocytes. In this study, we investigated the effects of long-term HFD on adipocyte progenitor cell (APC) population and adipose-specific gene profiles in both white and brown adipose, and the role of perivascular adipose in the alteration of vascular function in response to HFD.Main methodsMale C57BL/6 mice were fed a standard normal diet (ND) or HFD for about 8 months. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test. APC population and adipose-related gene profile were evaluated, and vascular function was measured in the presence or absence of perivascular adipose. Adiponectin and AMPK activity were also investigated.Key findingsHFD induced insulin resistance and glucose intolerance, and resulted in a decrease in APC population in brown, but not in white adipose tissue, when compared with animals fed a ND, with differential alterations of white and brown adipocyte-specific gene expression in brown and white adipose. Additionally, HFD led to altered vascular function in arteries in the presence of perivascular adipose tissue, which is associated with increased superoxide production. Adiponectin and AMPK activity were significantly decreased in response to long-term HFD.SignificanceThese findings suggest that long-term high-fat intake differentially alters adipocyte progenitor population and adipose-related gene expression in adipose tissue, and adiponectin-AMPK signaling might be involved. In addition, HFD induces changes in perivascular adipose-mediated vascular function.  相似文献   

2.
BackgroundWu-Mei-Wan, a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Our previous study showed that WMW treatment can prevent T2DM in db/db mice, which motivating the application of WMW on metabolic disorders.PurposeObesity and its comorbid diseases have increased dramatically and are now a worldwide health problem. There is still a lack of satisfactory treatment strategies for obesity. This work was designed to assess the effect and related mechanism of WMW on high fat diet (HFD)-induced obese mice model.MethodsObese mice were induced by HFD. Thetherapeutic effect of WMW were analyzed by examining body and adipose tissue weight, metabolic profile and energy expenditure. Adipose tissue phenotype was determined by histological staining and the mitochondrial content was examined by transmission electron microscopy (TEM). Immunohistochemical and immunofluorescence staining, RT-qPCR and Western blot analysis were used to evaluate expression of key molecules in adipose tissue.ResultsWMW treatment significantly protects HFD-induced obesity. Here we showed that WMW limits weight gain, improves metabolic profile and increases energy expenditure. WMW inhibits the hypertrophy and hyperplasia of white adipocytes, the mechanism involving the inhibition of TLR3/IL-6/JAK1/STAT3 pathway. In brown adipose tissue (BAT), WMW promotes thermogenicprogramme without affecting cell proliferation. The activated BMP7/ Smad1/5/9 pathway is considered to be one of the explanations for the effect of WMW on BAT.ConclusionOur results suggested that WMW can prevent obesity and its underlying mechanisms are associated with reducing white adipose tissue and enhancing brown adipose tissue function.  相似文献   

3.
4.
Obesity is caused by a long-term imbalance between energy intake and consumption and is regulated by multiple signals. This study investigated the effect of signaling scaffolding protein Gab2 on obesity and its relevant regulation mechanism. Gab2 knockout (KO) and wild-type (WT) mice were fed with a standard diet (SD) or high-fat diet (HFD) for 12 weeks. The results showed that the a high-fat diet-induced Gab2 expression in adipose tissues, but deletion of Gab2 attenuated weight gain and improved glucose tolerance in mice fed with a high-fat diet. White adipose tissue and systemic inflammations were reduced in HFD-fed Gab2 deficiency mice. Gab2 deficiency increased the expression of Ucp1 and other thermogenic genes in brown adipose tissue. Furthermore, the regulation of Gab2 on the mature differentiation and function of adipocytes was investigated in vitro using primary or immortalized brown preadipocytes. The expression of brown fat-selective genes was found to be elevated in differentiated adipocytes without Gab2. The mechanism of Gab2 regulating Ucp1 expression in brown adipocytes involved with its downstream PI3K (p85)-Akt-FoxO1 signaling pathway. Our research suggests that deletion of Gab2 suppresses diet-induced obesity by multiple pathways and Gab2 may be a novel therapeutic target for the treatment of obesity and associated complications.Subject terms: Fat metabolism, Obesity  相似文献   

5.
6.
The characteristics of regional brown (BAT) and white adipose tissue (WAT) growth and of thermogenesis following experimental overfeeding were studied in groups of male Sprague-Dawley rats fed lab chow or cafeteria diets for 8 weeks postweaning. Regional BAT and WAT growth was determined by dissection and weighing, and thermogenesis was characterized by measurements of resting and norepinephrine (NE)-stimulated oxygen consumption, of serum thyroid hormone concentrations, and of 24-hour urinary NE excretion levels. Cafeteria feeding resulted in a 113% increase in total BAT, with the most prominent increases in the interscapular, thoracic, and perirenal regions. Retroperitoneal, epididymal, and omental WAT were significantly greater in cafeteria than in chow-fed rats. Resting oxygen consumption of cafeteria-fed rads increased by 10% and NE excretion by 64% compared to chow-fed controls, while serum T3 concentrations were nearly doubled in the cafeteria-fed rats. The thermogenic response to NE injection in cafeteria-fed rats was 102% of their resting levels, compared to a 51% increase in the chow-fed controls. The results indicate that increased BAT growth occurs in all primary BAT depots following cafeteria-feeding in rats, and that the greater BAT mass is qualitatively proportional to their greater capacity for non-shivering thermogenesis. Also, the increased NE excretion and greater serum T3 concentration are consistent with increased sympathetic and thyroidal activity and may in part explain the thermogenic response to diet in the rat.  相似文献   

7.
Transplantation of brown adipose tissue (BAT) is a promising approach for treating obesity and metabolic disorders. However, obtaining sufficient amounts of functional BAT or brown adipocytes for transplantation remains a major challenge. In this study, we developed a hydrogel that combining adipose acellular matrix (AAM) and GelMA and HAMA that can be adjusted for stiffness by modulating the duration of light-crosslinking. We used human white adipose tissue-derived microvascular fragments to create beige adipose organoids (BAO) that were encapsulated in either a soft or stiff AAM hydrogel. We found that BAOs cultivated in AAM hydrogels with high stiffness demonstrated increased metabolic activity and upregulation of thermogenesis-related genes. When transplanted into obese and type 2 diabetes mice, the HFD + BAO group showed sustained improvements in metabolic rate, resulting in significant weight loss and decreased blood glucose levels. Furthermore, the mice showed a marked reduction in nonalcoholic liver steatosis, indicating improved liver function. In contrast, transplantation of 2D-cultured beige adipocytes failed to produce these beneficial effects. Our findings demonstrate the feasibility of fabricating beige adipose organoids in vitro and administering them by injection, which may represent a promising therapeutic approach for obesity and diabetes.  相似文献   

8.
The global incidence of human obesity has more than doubled over the past three decades. An ovine model of obesity was developed to determine effects of maternal obesity and arginine supplementation on maternal, placental, and fetal parameters of growth, health, and well being. One-hundred-twenty days prior to embryo transfer, ewes were fed either ad libitum (n?=?10) to induce obesity or 100% National Research Council-recommended nutrient requirements (n?=?10) as controls. Embryos from superovulated ewes with normal body condition were transferred to the uterus of control-fed and obese ewes on day 5.5 post-estrus to generate genetically similar singleton pregnancies. Beginning on day 100 of gestation, obese ewes received intravenous administration of saline or L-arginine-HCl three times daily (81?mg arginine/kg?body?weight/day) to day 125, whereas control-fed ewes received saline. Fetal growth was assessed at necropsy on day 125. Maternal obesity increased (1) percentages of maternal and fetal carcass lipids and (2) concentrations of leptin, insulin, glucose, glutamate, leucine, lysine and threonine in maternal plasma while reducing (1) concentrations of progesterone, glycine and serine in maternal plasma and (2) amniotic and allantoic fluid volumes. Administration of L-arginine to obese ewes increased arginine and ornithine concentrations in maternal and fetal plasma, amniotic fluid volume, protein content in maternal carcass, and fetal brown adipose tissue (+60%), while reducing maternal lipid content and circulating leptin levels. Fetal or placental weight did not differ among treatments. Results indicate that arginine treatment beneficially reduces maternal adiposity and enhances fetal brown adipose tissue development in obese ewes.  相似文献   

9.
Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium   总被引:14,自引:0,他引:14  
Cardiomyocyte (CM) regeneration is limited in adult life and is not sufficient to prevent myocardial infarction. Hence, the identification of a useful source of CM progenitors is of great interest for possible use in regenerative therapy. Mesenchymal stem cells in bone marrow, embryonic stem cells, and skeletal myoblasts are known sources of CM repletion; however, there are a number of critical problems for clinical application. In this study, we succeeded to identify CM progenitor cells in brown adipose tissue (BAT). Moreover, we showed that CM progenitor cells in BAT that existed in CD29-positive population could differentiate into CM with high efficiency. To confirm the in vivo effect of CD29(+)BAT-derived cells (BATDCs), we transplanted these cells into infarct border zone of an acute myocardial infarction model in rat. Results clearly indicated that implantation of CD29(+) BATDCs led to the reduction of the infarction area and improvement of left ventricular function by replacing newly developed CMs in comparison with that by CD29(+) white adipose tissue-derived cells or control saline. These findings suggest that BATDCs are one of the useful sources for a new strategy in CM regeneration.  相似文献   

10.
《Cytotherapy》2020,22(10):521-528
The discovery of brown fat in adult humans has led to increased research of the thermogenic function of this tissue in various metabolic diseases. In addition, high levels of brown fat have been correlated with lower body mass index values. Therefore, increasing brown fat mass and/or activity through methods such as the browning of white fat is considered a promising strategy to prevent and treat obesity-associated diseases. Cell-based approaches using mesenchymal stromal cells and brown adipose tissue (BAT) have been utilized to directly increase BAT mass/activity through cell and tissue implantation into animals. In addition, recent studies evaluating the transplantation of human embryonic stem cells and induced pluripotent stem (iPS) cells have shown promising results in terms of positive metabolic function. In this comprehensive review, we provide a summary of the research over the past 10 years with regard to stem cell therapy and brown fat tissue transplantation for the effective treatment of metabolic syndrome. Recent advancements in stem cell methods have allowed for the production of brown adipocytes from human iPS cells, which represent an unlimited source of cellular material with which to study adipocyte development. In addition, this process is expected to be used to further explore drug- and cell-based therapies to treat obesity-related metabolic complications.  相似文献   

11.
Adipose-derived stem cells (ADSCs) can differentiate into neurons under particular conditions. It remains largely unknown whether this differentiation potential is affected by physical conditions such as obesity, which modulates the functions of adipose tissue. In this study, we determined the impact of either a 9-week high-fat diet (60% fat; HFD) or 9-week exercise training on the differentiation potential of ADSCs into neuron-like cells in male Wistar rats. Rats were randomly assigned to a normal diet-fed (ND-SED) group, HFD-fed (HFD-SED) group, or exercise-trained HFD-fed group (HFD-EX). After a 9-week intervention, ADSCs from all groups differentiated into neuron-like cells. Expression of neuronal marker proteins (nestin, βIII-tubulin, and microtubule-associated protein 2 [MAP2]) and the average length of cell neurites were lower in cells from HFD-SED rats than in other groups. Instead, protein expression of COX IV and Cyt-c, the Bax/Bcl-2 and LC3-II/I ratio, and the malondialdehyde level in culture medium were higher in cells from HFD-SED rats. No significant difference between ND-SED and HFD-EX rats was observed, except for the average length of cell neurites in MAP2. Thus, HFD impaired the differentiation potential of ADSCs into neuron-like cells, which was accompanied by increases in apoptotic activity and oxidative stress. Importantly, exercise training ameliorated the HFD-induced impairment of neurogenesis in ADSCs. The adipose tissue microenvironment could influence the differentiation potential of ADSCs, a source of autologous stem cell therapy.  相似文献   

12.
Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet.C57BLJ6 wild type male mice were fed either a standard (SD) or a high-fat diet (HFD) for 5 months. Total RNA was prepared from white adipose tissue and was used for microRNA profiling and qPCR.Twenty-two of the most differentially expressed miRNAs, as identified by the microRNA profiling were validated using qPCR. The results of the present study confirmed previous results. The up-regulation of mmu-miR-222 and the down-regulation of mmu-miR-200b, mmu-miR-200c, mmu-miR-204, mmu-miR-30a*, mmu-miR-193, mmu-miR-378 and mmu-miR-30e* after HFD feeding has also been previously reported. On the other hand, we show for the first time the up-regulation of mmu-miR-342-3p, mmu-miR-142-3p, mmu-miR-142-5p, mmu-miR-21, mmu-miR-146a, mmu-miR-146b, mmu-miR-379 and the down-regulation of mmu-miR-122, mmu-miR-133b, mmu-miR-1, mmu-miR-30a*, mmu-miR-192 and mmu-miR-203 during the development of obesity. However, future studies are warranted in order to understand the exact role that miRNAs play in adipogenesis and obesity.  相似文献   

13.
Until quite recently, brown adipose tissue was considered of metabolic significance only in small mammals and human newborns, since it was thought to disappear rapidly after birth in humans. However, nowadays this tissue is known to play a role in the regulation of energy balance not only in rodents, but also in humans. In this review we highlight new features regarding brown adipose tissue origin and function and revise old paradigms about brown adipocyte differentiation.  相似文献   

14.
15.
A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.  相似文献   

16.
17.
The innervation of rat interscapular brown adipose tissue has been studied by light and fluorescence microscopy and electron microscopy after treatment with "false" adrenergic neurotransmitters 5- and 6-hydroxydopamine. The vascular markers neoprene latex and thioflavin S were used to define the blood vascular arrangements within the around the tissue. Catecholaminergic innervation was revealed by fluorescence microscopy at both parenchymal and vasomotor sites. In animals injected with 6-hydroxydopamine, this catecholaminergic fluorescence was extinguished in the parenchymal nerve distribution and markedly reduced in the vasomotor plexus. Identification of an extensive network of noradrenergic vasomotor and parenchymal nerve terminals was established by electron microscopy after 5- and 6-hydroxydopamine administration, but unmarked terminals were also observed in both distributions. These unmarked terminals might represent an additional nonnoradrenergic nerve supply to interscapular brown adipose tissue. The thoracodorsal veins draining the fat pads are directly tributary to a large median perforating vein, which joins the azygos vein, and are also continuous with the axillary vein. In addition to the recognized vascular distribution pattern of lobular arteries supplying an abundant capillary plexus drained by lobular veins, direct arteriovenous anastomoses were observed within the interscapular brown fat pad. It is postulated that these additional vascular arrangements are determinant in the phenomenal increase in blood flow through brown adipose tissue during metabolic stimulation.  相似文献   

18.
Feeding adult male rats a palatable cafeteria diet stimulated energy intake and expenditure but also raised body weight and energy gains. Bilateral adrenalectomy (ADX) had little effect on stock-fed animals, but prevented the development of obesity in cafeteria-fed rats by depressing food intake and energetic efficiency. Adrenalectomy also markedly increased the thermogenic activity of brown adipose tissue, and depressed insulin levels, particularly in the cafeteria group.  相似文献   

19.
Obese adipose tissue is characterized by increased macrophage infiltration, which results in chronic inflammation in adipose tissue and leads to obesity-related diseases such as type 2 diabetes mellitus and atherosclerosis. The regulation of macrophage infiltration into adipose tissue is an important strategy for preventing and treating obesity-related diseases. In this study, we report that naringenin, a citrus flavonoid, suppressed macrophage infiltration into adipose tissue induced by short-term (14 days) feeding of a high-fat diet in mice; although naringenin did not show any differences in high-fat diet-induced changes of serum biochemical parameters in this short administration period. Naringenin suppressed monocyte chemoattractant protein-1 (MCP-1) in adipose tissue, and this effect was mediated in part through inhibition of c-Jun NH2-terminal kinase pathway. Naringenin also inhibited MCP-1 expression in adipocytes, macrophages, and a co-culture of adipocytes and macrophages. Our results suggest a mechanism by which daily consumption of naringenin may exhibit preventive effects on obesity-related diseases.  相似文献   

20.
In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40–60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cycloxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号