首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of Mg2+, Ca2+ and Fe2+/Fe3+ were determined in roots and shoots of sugar beet seedlings (Beta vulgaris L. cv. Monohill) cultured for 5 weeks in a complete nutrient solution to which either Cd2+ (0, 5 or 50 μM), EDTA (0, 10 or 100 μM) or a combination of both was added. The plants subjected to the various treatments showed a variety of deficiency symptoms. Leaves of the Cd2+-treated plants became thin and chlorotic (Mg- and Fe-deficiency symptoms). The plants showed reduced growth and developed only a few brownish roots with short laterals (Ca-deficiency symptoms). EDTA treatment resulted in green, stunted, hard leaves and reduced growth (Ca-deficiency symptoms). The deficiency symptoms observed correspond well with the observed uptake rates and distributions of Mg2+, Ca2+ and Fe2+/Fe3+. Increases in either Cd2+, EDTA or a combination of both in the growth medium, were correlated with increasing Mg2+ levels in the roots and with decreasing Mg2+ levels in the shoots. Cd2+ alone or in combination with EDTA had little influence on Ca2+ levels in the shoots but decreased Ca2+ levels in the roots. Thus, Cd2+ affects Mg2+ and Ca2+ transport in opposite ways: Mg2+ transport to the shoots is inhibited while that of Ca2+ is facilitated. Treatment with EDTA alone did not affect Ca2+ concentrations in either the shoots or the roots. Treatment with Cd2+ lowered Fe2+ concentrations in both roots and shoots.  相似文献   

2.
The effects of Cu2+, Zn2+, Cd2+ and Pb2+ on growth and the biochemical characteristics of photosynthesis were more expressed in barley (Hordeum vulgare L.) than in maize (Zea mays L.) seedlings. The barley and maize seedlings exhibited retardation in shoot and root growth after exposure of Cu2+, Cd2+ and Pb2+. The Zn2+ions practically did not influence these characteristics. The total protein content of barley and maize roots declined with an increase in heavy metal ion concentrations. The protein content of barley shoots was only slighly decreased with an increase in heavy metal ion concentrations, but the protein content in maize shoots was increased under the same conditions. The chlorophyll content was decreased in barley shoots and increased in maize. The ribulose-l,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) activities were decreased drastically by Cu2+, Cd2+ and Pb2+ in thein vivo experiments. The tested heavy metal ions affect photosynthesis probably mainly by inhibition of these key carboxylating enzymes: this mechanism was studied in thein vitro experiments.  相似文献   

3.
Sorption of Cu2+ and Zn2+ to the plasma membrane (PM) of wheat root (Triticum aestivum Lcv. Scout 66) vesicles was measured at different pH values and in the presence of organic acids and other metals. The results were analyzed using a Gouy-Chapman-Stem model for competitive sorption (binding and electrostatic attraction) to a negative binding site. The binding constants for the two investigated cations as evaluated from the sorption experiments were 5 M–1 for Zn2+ and 400 M–1 for Cu2+. Thus, the sorption affinity of Cu2+ to the PM is considerably larger than that of Ca2+, Mg2+ or Zn2+. The greater binding affinity of Cu2+ was confirmed by experiments in which competition with La3+ for sorption sites was followed. The amount of sorbed Cu2+ decreased with increasing K+, Ca2+, or La3+ concentrations, suggesting that all these cations competed with Cu2+ for sorption at the PM binding sites, albeit with considerable differences among these cations in effectiveness as competitors with Cu2+. The sorption of Cu2+ and Zn2+ to the PM decreased in the presence of citric acid or malic acid. Citric acid (as well as pH) affected the sorption of Cu2+ or Zn2+ to PM more strongly then did malic acid.  相似文献   

4.
In 10-d-old soybean seedlings, the growth of roots and shoots was significantly inhibited at 50 and 100 M and more Cd2+, respectively, and by 50 M or more Ni2+. Although total protein content of roots exposed to 200 M Cd2+ or Ni2+ was similarly decreased compared to the control, the activity of nitrate reductase was much more inhibited by Cd2+. Ni2+-treatment (200 M) induced an accumulation of all free amino acids in roots associated with a decrease in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities reflecting the accumulation of both alanine and aspartic acid, respectively. Cd2+-treatment (200 M) decreased the amount of all free amino acids. In addition, cysteine which is the main amino acid consisting the phytochelatin complexes constituted about 17.5 % of total free amino acids. The activities of both ALT and AST in Cd2+-treated roots were higher than in Ni2+-treated roots suggesting higher conversion of alanine and aspartate to pyruvate and oxaloacetate. Primary leaves excised from either Cd2+ or Ni2+-treated seedlings showed similar pattern of enzyme activities as roots.  相似文献   

5.
Enhanced cadmium accumulation in maize roots—the impact of organic acids   总被引:4,自引:0,他引:4  
Low molecular weight organic acids are important components of root exudates and therefore, knowledge regarding the mechanisms of cadmium (Cd) uptake and distribution within plants under the influence of organic acids, is necessary for a better understanding of Cd behavior in the plant–soil system. In this study, acetic and malic acids increased the uptake of Cd by maize (Zea mays L. cv. TY2) roots and enhanced Cd accumulation in shoots under hydroponic conditions. Concentration-dependent net Cd influx in the presence and absence of organic acids could be resolved into linear and saturable components. The saturable component followed Michaelis–Menten kinetics, which indicated that Cd uptake across the plasma membrane was transporter-mediated. While the K m values were similar, the V max values in the presence of acetic and malic acids were respectively 6.0 and 3.0 times that of the control. Zinc transporters were the most probable pathways for Cd accumulation. It was hypothesized that Cd(II)–organic acid complexes associated with the root zone, could decompose and liberate Cd2+ for subsequent absorption by maize roots; and that in the layer of the roots or within the root free space, depletion of Cd2+ was buffered by the presence of Cd(II)–organic acid complexes. Plant response to elevated Cd levels involved overproduction of organic acids in maize roots as a resistance mechanism to alleviate Cd toxicity.  相似文献   

6.
In liver homogenate the biosynthesis ofN-acetylneuraminic acid usingN-acetylglucosamine as precursor can be followed stepwise by applying different chromatographic procedures. In this cell-free system 16 metal ions (Zn2+, Mn2+, La3+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Ce3+, Cd2+, Fe2+, Fe3+, Al3+, Sn2+, Cs+ and Li+) and the selenium compounds, selenium(IV) oxide and sodium selenite, have been checked with respect to their ability to influence a single or possible several steps of the biosynthesis ofN-acetylneuraminic acid. It could be shown that the following enzymes are sensitive to these metal ions (usually applied at a concentration of 1 mmoll–1):N-acetylglucosamine kinase (inhibited by Zn2+ and vandate), UDP-N-acetylglucosamine-2-epimerase (inhibited by zn2+, Co2+, Cu2+, Hg2+, VO 3 , Pb2+, Cd2+, Fe3+, Cs+, Li+, selenium(IV) oxide and selenite), andN-acetylmannosamine kinase (inhibited by Zn2+, Cu2+, Cd2+, and Co2+). Dose dependent measurements have shown that Zn2+, Cu2+ and selenite are more efficient inhibitors of UDP-N-acetylglucosamine-2-epimerase than vanadate. As for theN-acetylmannosamine kinase inhibition, a decreasing inhibitory effect exists in the following order Zn2+, Cd2+, Co2+ and Cu2+. In contrast, La3+, Al3+ and Mn2+ (1 mmoll–1) did not interfere with the biosynthesis ofN-acetylneuraminic acid. Thus, the conclusion that the inhibitory effect of the metal ions investigated cannot be regarded as simply unspecific is justified.Dedicated to Professor Theodor Günther on the occasion of his 60th birthday  相似文献   

7.
Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd15) or 30 mg Cd kg?1 soil (Cd30). EDTA and citric acid at 0.5 g kg?1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.  相似文献   

8.
Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu2+, Mg2+, Zn2+, and Mn2+; unaffected by Ba2+, Cd2+, and Pb2+; and inhibited by Al3+. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg2+. On the other hand, in the case of corn root cell walls (CCW), only inhibition of the bound acid phosphatase by Al3+ and Hg2+ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg2+. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca2+ significantly reduced the effects of Hg2+ or Al3+, but not Mg2+, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg2+ or Al3+ which caused a Ca2+-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.  相似文献   

9.
We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.  相似文献   

10.
Cd2+, Mn2+, and Al3+ inhibited synaptosomal amine uptake in a concentration-dependent and time-dependent manner. In the absence of Ca2+, the rank order of inhibition of noradrenaline uptake was: Cd2+ (IC50 = 250 μM) > Al3+ (IC50 = 430 μM) > Mn2+ (IC50 = 1.50 mM), the IC50 being the concentration of metal ions that gave rise to 50% inhibition of uptake. In the presence of 1 mM Ca2+, the rank order of inhibition of uptake was: Al3+ (IC50 = 330 μM) > Cd2+ (IC50 = 540 μM) > (IC50 = 1.5 mM). The rank order of inhibition of serotonin uptake without Ca2+ was: Al3+ (IC50 = 370 μM) > Cd2+ (IC50 = 610 μM) > Mn2+ (IC50 = 3.4 mM) and the rank order in the presence of 1 mM Ca2+ was: Al3+ (IC50 = 290 μM) > Cd2+ (IC50 = 1.5 mM) > Mn2+ (IC50 = 4.0 mM). Ca2+, at 1 mM, definitely antagonized the inhibitory actions of Cd2+ on noradrenaline and serotonin uptake. Al3+ stimulated noradrenaline uptake at concentrations around 20–250 μM but inhibited this uptake at concentrations exceeding 300 μM in a dose-related fashion. Ca2+, at 1 mM, enhanced both the stimulatory and inhibitory effects of Al3+. Ca2+ also enhanced the inhibitory actions of Al3+ on seotonin uptake. These results, in conjunction with those we have previously published, suggest that Cd2+, Mn2+, and Al3+ exert differential and selective effects on the structure and function of synaptosomal membranes.  相似文献   

11.
The addition of as little as 2 ppb of manganese to ferrocyanide-treated beet molasses during citric acid fermentation by Aspergillus niger NRC A-1-233 caused a 10% reduction in acid yield and undesirable change in the morphology of the organism from the normal pelletlike form to the filamentous from. Still smaller additions (0.4-2ppb) caused undesirable pellet clumping, while greater additions (2-100 ppb) gave further decreases in yield. The yield obtained at 100 ppb was less than 25% of that obtained at 1 ppb or less. None of the other metals tested (Al3+, Ca2+, Co2+, Cu2+, Fe2+, Mg2+, Ni2+, Zn2+) visibly changed pellet morphology, and only Al3+, Fe2+, and Zn2+ at relatively higher concentrations (5–25ppm) reduced acid yield. The adverse effect of manganese on growth and acid production was not affected by addition of the other metals.  相似文献   

12.
重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响   总被引:2,自引:0,他引:2  
该研究以Cu~(2+)、Zn~(2+)、Cd~(2+)单一胁迫为对照,探讨不同浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫对麻疯树幼苗生理生化指标的影响。结果表明:随着Cu~(2+)、Zn~(2+)、Cd~(2+)浓度的增加,麻疯树幼苗叶片中的蛋白质(Pro)、丙二醛(MDA)含量均逐渐增加,其叶片叶绿素含量随着Zn~(2+)胁迫浓度的增加呈现出先降后升的趋势,在中等浓度(100 mg·L-1)的Zn~(2+)胁迫时含量最低、随着Cu~(2+)胁迫浓度的增加叶绿素含量先升高后降低,在Cu~(2+)浓度为200 mg·L-1时含量最高,达到1 200 mg·g-1FW; Cd~(2+)胁迫对叶绿素含量和根系活力无明显影响。根系活力在Zn~(2+)浓度为100 mg·L~(-1)时最强,随着Cu~(2+)浓度的增加而减弱。低浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)对过氧化物酶活性和可溶性糖含量都具有促进作用。Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫时对可溶性蛋白、叶绿素和丙二醛含量均无明显影响,随着复合胁迫时浓度的增加,可溶性糖含量和根系活力先增后减。这表明麻疯树对三种重金属的胁迫具有一定的抗性,过高浓度的胁迫会影响麻疯树幼苗生理生化的一些指标,但是麻疯树可以通过自身的防御系统使伤害降到最小。此外,重金属复合胁迫可以在一定程度上减轻单一胁迫对麻疯树幼苗造成的毒害作用。  相似文献   

13.
Mung bean seedlings inoculated with Enterobacter asburiae PSI3, a gluconic acid-producing rhizosphere isolate, enhanced plant growth in the presence of phytotoxic levels of Cd2+ in gnotobiotic pot experiments as compared to the uninoculated Cd-treated plants. Addition of organic acids to Cd-stressed seedlings promoted root elongation. Hematoxylin competition assays showed that organic acids could displace Cd2+ from the Cd2+: hematoxylin complex in the same order of effectiveness as was found for restoration of root net elongation viz. oxalate > malate > succinate while gluconate was effective at higher concentrations. Root associated Cd2+, assessed by hematoxylin staining of roots was found to be reduced when roots were treated with organic acid. Cd stress increased antioxidant enzymes such as peroxidase and superoxide dismutase in mung bean roots while organic acid treatment suppressed the up-regulation of these enzymes by Cd.  相似文献   

14.
Cadmium (Cd2+) interferes with the uptake, transport and utilization of several macro‐ and micronutrients, which accounts, at least in part, for Cd2+ toxicity in plants. However, the mechanisms underlying Cd2+ interference of ionic homeostasis is not understood. Using biophysical techniques including membrane potential measurements, scanning ion‐selective electrode technique for non‐invasive ion flux assays and patch clamp, we monitored the effect of Cd2+ on calcium (Ca2+) and potassium (K+) transport in root hair cells of rice. Our results showed that K+ and Ca2+ contents in both roots and shoots were significantly reduced when treated with exogenous Cd2+. Further studies revealed that three cellular processes may be affected by Cd2+, leading to changes in ionic homeostasis. First, Cd2+‐induced depolarization of the membrane potential was observed in root hair cells, attenuating the driving force for cation uptake. Second, the inward conductance of Ca2+ and K+ was partially blocked by Cd2+, decreasing uptake of K+ and Ca2+. Third, the outward K+ conductance was Cd2+‐inducible, decreasing the net content of K+ in roots. These results provide direct evidence that Cd2+ impairs uptake of Ca2+ and K+, thereby disturbing ion homeostasis in plants.  相似文献   

15.
We applied the alkaline version of the single-cell gel electrophoresis (comet assay) to seedlings of heterozygous tobacco (Nicotiana tabacum L. var. xanthi) treated with zinc acetate dihydrate (20 to 80 mM Zn2+ for 2 h or 2 to 12 mM Zn2+ for 24 h). A dose dependent increase in DNA damage expressed by the tail moment values were observed in nuclei isolated from the roots after 2 and 24 h Zn2+ treatments. In contrast, Zn2+ did not induce significant DNA damage to leaf nuclei, with the exception of 10 or 12 mM Zn2+ for 24 h. Somatic mutations, identified as dark green, yellow, and dark green/yellow double sectors on the pale green tobacco leaves were not detected after any Zn2+ treatments. The accumulation of Zn in roots and shoots was determined by inductively coupled plasma optical emission spectrometry and the Zn content in roots was about three times higher than in shoots.  相似文献   

16.
Plant accumulation of Fe and other metals can be enhanced under Fe deficiency. We investigated the influence of Fe status on heavy-metal and divalent-cation uptake in roots of pea (Pisum sativum L. cv Sparkle) seedlings using Cd2+ uptake as a model system. Radiotracer techniques were used to quantify unidirectional 109Cd influx into roots of Fe-deficient and Fe-sufficient pea seedlings. The concentration-dependent kinetics for 109Cd influx were graphically complex and nonsaturating but could be resolved into a linear component and a saturable component exhibiting Michaelis-Menten kinetics. We demonstrated that the linear component was apoplastically bound Cd2+ remaining in the root cell wall after desorption, whereas the saturable component was transporter-mediated Cd2+ influx across the root-cell plasma membrane. The Cd2+ transport system in roots of both Fe-deficient and Fe-sufficient seedlings exhibited similar Michaelis constant values, 1.5 and 0.6 μm, respectively, for saturable Cd2+ influx, whereas the maximum initial velocity for Cd2+ uptake in Fe-deficient seedlings was nearly 7-fold higher than that in Fe-grown seedlings. Investigations into the mechanistic basis for this response demonstrated that Fe-deficiency-induced stimulation of the plasma membrane H+-ATPase did not play a role in the enhanced Cd2+ uptake. Expression studies with the Fe2+ transporter cloned from Arabidopsis, IRT1, indicated that Fe deficiency induced the expression of this transporter, which might facilitate the transport of heavy-metal divalent cations such as Cd2+ and Zn2+, in addition to Fe2+.  相似文献   

17.
18.
Background and Aims Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure.Methods Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn2+ and Al3+ in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth.Key Results In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn2+ activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma.Conclusions The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots.  相似文献   

19.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

20.
Properties of partially purified NADP-malic enzyme (EC 1.1.1.40) from glumes of developing wheat grains were examined. The pH optimum for enzyme activity was influenced by malate and shifted from 7.3 to 7.6 when the concentration of malate was increased from 2 to 10 mM. The Km values, at pH 7.3, for various substrates were: malate, 0.76 mM; NADP, 20 μM and Mn2+, 0.06 mM. The requirement of Mn2+ cation for enzyme activity could be partially replaced by Mg2+ or Co2+. Mn2+ dependent enzyme activity was inhibited by Pb2+, Ni2+, Hg2+, Zn2+, Cd2+, Al3+ and Fe3+. During the reaction, substrate molecules (malate and NADP) reacted with enzyme sequentially. Activity of malic enzyme was inhibited by products of the reaction viz pyruvate, HCO3? and NADPH2. At a limiting fixed concentration of NADP, these products induced a positive cooperative response to increasing concentrations of malate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号