首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park KH  Kim MJ  Lee HS  Han NS  Kim D  Robyt JF 《Carbohydrate research》1998,313(3-4):235-246
It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an alpha-(1-->6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached alpha-(1-->6) to D-glucose, D-mannose, D-galactose, and methyl alpha-D-glucopyranoside. With D-fructopyranose and D-xylopyranose, PTS was linked alpha-(1-->5) and alpha-(1-->4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of alpha-(1-->3) and/or alpha-(1-->4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked alpha-(1-->4) to the glucose residue. alpha,alpha-Trehalose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4). Maltitol gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the glucopyranose residue. Raffinose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the D-galactopyranose residue. Maltotriose gave two major products with PTS linked alpha-(1-->6) and alpha-(1-->4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked alpha-(1-->5) as the major product and D-glucitol gave PTS linked alpha-(1-->6) as the only product. The structures of the transfer products were determined using thin-layer chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was D-glucitol.  相似文献   

2.
Previous syntheses of ganglioside GM3 (NeuAc alpha3Gal beta4Glc beta1Cer) are reviewed, and both chemoenzymatic and chemical total synthetic approaches were investigated. In a chemoenzymatic approach, (2S,3R,4E)-5'-acetyl-alpha-neuraminyl-(2' --> 3')-beta-galactopyranosyl-(1' --> 4')-beta-glucopyranosyl-(1' <--> 1)-2-azido-4-octadecene-1,3-diol (azidoGM3) was readily prepared utilizing recombinant beta-Gal-(1' --> 3'/4')-GlcNAc alpha-(2' --> 3')-sialyltransferase enzyme, and was evaluated as a synthetic intermediate to ganglioside GM3. The chemical total synthesis of ganglioside GM3 was performed on one of the largest scales yet reported. The highlights of this synthesis include minimizing the steps necessary to prepare the lactosyl acceptor as a useful anomeric mixture, which was present in excess for the highly regioselective and fairly stereoselective sialylation with a known neuraminyl donor to give the protected GM3 trisaccharide. The synthetic methodology maximized convergence by a subsequent glycosidic coupling of the well-characterized GM3 trisaccharide trichloroacetimidate derivative with protected ceramide. The ganglioside GM3 was nearly homogeneous as the two glycosidic couplings utilized preparative HLPC purifications, and variations in the sphingosine base and fatty acyl group were under 0.1 and 0.2%, respectively.  相似文献   

3.
Inhibitors that are structurally related to the transition-state model of the proposed SN1-type mechanism of sialyl transfer, exhibit particularly high binding affinities to alpha(2-6)sialyltransferases. Furthermore, replacing the neuraminyl residue with a simple aryl or hetaryl ring and substituting the carboxylate group for a phosphonate moiety, improves both binding affinity and synthetic accessibility. Herein we report on the synthesis and inhibition of a wide range of novel, potent transition-state analogue based alpha(2-6)sialyltransferase inhibitors comprising a planar anomeric carbon, an increased distance between the anomeric carbon and the CMP leaving group, and at least two negative charges. We also present a short, efficient asymmetric synthesis of the most promising benzyl inhibitors, providing rapid access to large quantities of highly potent, stereochemically-pure (>96% de) inhibitors for further biological investigation (e.g.(R)-3b, Ki = 70 nM).  相似文献   

4.
A sialyl T-antigen-linked tetrapeptide was prepared by the combined method of chemical synthesis and enzymatic synthesis. The GalNAc-linked peptide was first obtained by using a commercial peptide synthesizer, and then a galactose residue was attached with beta-(1-->3)-linkage by transglycosylating with a recombinant beta-galactosidase from Bacillus circulans. The sialic acid residue was then combined by alpha-(2-->3)-linkage with sialytransferase from rat liver.  相似文献   

5.
Mannans from genetically modified Pichia pastoris yeast, used for overproduction of neural cell adhesion molecule protein, grown on normal media or on uniformly 13C-labeled glucose and methanol, were isolated and characterized by high-field (750 MHz) NMR spectroscopy. Fully 13C-labeled oligosaccharide fragments were prepared from mannans by acetolysis. According to the data obtained, the mannan is made up of a main chain of alpha-(1-->6)-linked mannopyranosyl residues, substituted at 0-2 with alpha-mannopyranosyl or a alpha-D-Manp-(1-->2)-beta-D-Manp-(1-->2)-beta-D-Manp-( 1-->2)-alpha-D-Manp- group, and with much lower content of substitution with beta-D-Manp-(1-->2)-alpha-D-Manp-. A fraction of these oligosaccharide side chains is again substituted with alpha-D-Glcp or alpha-D-GlcpNAc through a phosphodiester linkage to the 6 position of the first mannopyranosyl residue. Improved conditions of acetolysis, cleaving all alpha-(1-->6) linkages, but not beta-mannoside linkages, are proposed.  相似文献   

6.
The alpha-L-arabinofuranosidase (AF) from the fungus Rhizomucor pusillus HHT-1 released arabinose at appreciable rates from (1-->5)-alpha-L-arabinofuranooligosaccharides, sugar beet arabinan and debranched arabinan. This enzyme preferentially hydrolyzed the terminal arabinofuranosyl residue [alpha-(1-->5)-linked] of the arabinan backbone rather than the arabinosyl side chain [alpha-(1-->3)-linked residues]. The enzyme-hydrolyzed arabinan reacted at and debranched the arabinan almost at the same rate, and the degree of conversion for both cases was 65%. Methylation analysis of arabinan showed that the arabinosyl-linkage proportions were 2:2:2:1, respectively, for (1-->5)-Araf, T-Araf, (1-->3, 5)-Araf and (1-->3)-Araf, while the ratios for the AF-digested arabinan shifted to 3:1:2:1. Enzyme digestion resulted in an increase in the proportion of (1-->5)-linked arabinose and a decrease in the proportion of terminal arabinose indicated this AF cleaved the terminal arabinosyl residue of the arabinan back bone [alpha-(1-->5)-linked residues]. Peak assignments in the 13C NMR spectra also confirmed this linkage composition of four kinds of arabinose residues. Both 1H and 13C NMR spectra are dominated by signals of the alpha-anomeric configuration of the arabinofuranosyl moieties. No signals were recorded for arabinopyranosyl moieties in the NMR spectra. Methylation and NMR analysis of native and AF-digested arabinan revealed that this alpha-L-arabinofuranosidase can only hydrolyse alpha-L-arabinofuranosyl residues of arabinan.  相似文献   

7.
Zeng X  Uzawa H 《Carbohydrate research》2005,340(16):2469-2475
From the beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (1) prepared by the transglycosylation of beta-galactosidase from Bacillus circulans, alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (9) and alpha-D-Neu5Ac-(2-->6)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p (10) were effectively synthesized with an equimolar ratio of CMP-Neu5Ac by recombinant rat alpha-(2-->3)-N-sialyltransferase and rat liver alpha-(2-->6)-N-sialyltransferase, respectively. The former enzyme also transferred effectively the Neu5Ac residue from CMP-Neu5Ac to the location of OH-3 in the non-reducing terminal of beta-D-Gal-(1-->4)-beta-D-Gal-OC6H4NO2-p or beta-D-Gal-(1-->4)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-OC6H4NO2-p, while the latter enzyme did not. In the case of equimolar ratio of GDP-Fuc/acceptor, 1 and 9 were further fucosylated quantitatively to form beta-D-Gal-(1-->4)-beta-D-(alpha-l-Fuc-(1-->3)-)-GlcNAc-OC6H4NO2-p (14) and alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-beta-D-(alpha-l-Fuc-(1-->3)-)-GlcNAc-OC6H4NO2-p (13) by recombinant human alpha-(1-->3)-fucosyltransferase VII, respectively.  相似文献   

8.
Ishiwata A  Ohta S  Ito Y 《Carbohydrate research》2006,341(10):1557-1573
It has been shown that certain prokaryotes, such as Campylobacter jejuni, have asparagine (Asn)-linked glycoproteins. However, the structures of their glycans are distinct from those of eukaryotic origin. They consist of a bacillosamine residue linked to Asn, an alpha-(1-->4)-GalpNAc repeat, and a branching beta-Glcp residue. In this paper, we describe a strategy for the stereoselective construction of the alpha-(1-->4)-GalpNAc repeat of a C. jejuni N-glycan, utilizing a pentafluoropropionyl (PFP) group as a temporary protective group of the C-4 OH group of the GalpN donor. The strategy was applied to the synthesis of the hexasaccharide alpha-GalpNAc-(1-->4)-alpha-GalpNAc-(1-->4)-[beta-Glcp-(1-->3)]-alpha-GalpNAc(1-->4)-alpha-GalpNAc-(1-->4)-GalpNAc.  相似文献   

9.
A great deal of experimental evidence has accumulated in the past several decades, suggesting that polysaccharides have wide bioactivities. Cladonia furcata polysaccharide, CFP-2, a water-soluble lichenin with a mean Mr 7.6 x 10(4), was first obtained by 0.25 M NaOH solution extraction, ethanol precipitation, DEAE-cellulose, and Sephadex G-200 column chromatography. Gas chromatography of acid hydrolyzate of CFP-2 suggested that it was composed of D-glucose, D-galactose, and D-mannose in the molar ratios of 8:1:1. Periodate oxidation, Smith degradation, IR, and NMR spectroscopy analysis revealed that CFP-2 had a backbone consisting of alpha-(1-->3) and alpha-(1-->4)-linked D-glucopyranosyl residues substituted at O-6 with beta-(1-->6)-linked D-galactopyranosyl residue and alpha-(1-->6)-linked D-mannopyranosyl residue. CFP-2 was able to reduce viability of cultured HL-60 and K562 cells. The antiproliferative properties of CFP-2 appeared to be attributable to its induction of apoptotic cell death as determined by ultrastructural change, internucleosomal DNA fragmentation, and increased proportion of the subdiploid cell population. To elucidate molecular events in the apoptosis, protein expressions of Bcl-2, Bax, Fas, and FasL were measured by Western blotting using specific antibodies in HL-60 cells. The level of Bcl-2 remained largely unchanged, but the Bax, Fas, and FasL expression showed up-regulation. Moreover, the telomerase activity analyzed by TRAP-ELISA assay in HL-60 cells treated with CFP-2 decreased as compared with the untreated control cells. These results suggest that CFP-2 could have a possible cancer therapeutic potential.  相似文献   

10.
Alternanase catalyzes the hydrolysis of alternan, an alpha-(1-->3)-alpha-(1-->6)-D-glucan produced by Leuconostoc mesenteroides, resulting in the formation of a cyclic tetramer cyclo -->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->(2) (cGlc(4)). Two alpha-galactosidases, one from coffee bean and the other produced by a fungus, currently described as Thermomyces lanuginosus, were found to catalyze an efficient 6-O-alpha-D-galactopyranosylation of cGlc(4). The attachment of a nonreducing alpha-D-galactopyranosyl residue to the cGlc(4) molecule opens new possibilities for future applications of the cyclic tetramer, since the D-galactopyranosyl residue can be easily modified by D-galactose oxidase to introduce a reactive aldehyde group. The results also extend our knowledge about the synthetic potential of T. lanuginosus alpha-galactosidase.  相似文献   

11.
A sucrose glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus transferred the uniformly 13C-labeled glucosyl residue ([U-(13)C]Glc) from [U-(13)C]sucrose to exogenous dextran T500 at the non-reducing-end, mostly by alpha-(1-->6) linkages and partially by alpha-(1-->3) linkages, as revealed by the 13C-(13)C NMR coupling pattern. With increasing amounts of [U-(13)C]sucrose, transfer of [U-(13)C]Glc to the alpha-(1-->3)-linked chain became predominant without increase in the number of chains. The transfer of [U-(13)C]Glc to an isomaltopentaose acceptor occurred similarly to its transfer to T500. alpha-(1-->3)-branches in the [U-(13)C]dextran, specifically synthesized from [U-(13)C]sucrose by a Streptococcus bovis dextransucrase, were not formed by GTF-I, as judged by the observation that a newly-formed alpha-1,3,6-branched [U-(13)C]Glc was not detected, which could have been formed by transferring the unlabeled Glc from sucrose to the internal alpha-(1-->6)-linked [U-(13)C]Glc at C-3. The 13C-(13)C one-bond coupling constants (1J) were also recorded for the C-1--C-6 bond of the internal alpha-(1-->6)-linked [U-(13)C]Glc and of the non-reducing-end [U-(13)C]Glc.  相似文献   

12.
A panel of alpha-(1-->6)-linked mannose disaccharides (5-8) in which the 2'-OH group has been replaced, independently, by deoxy, fluoro, amino, and methoxy functionalities has been synthesized. Evaluation of these compounds as potential substrates or inhibitors of a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase involved in mycobacterial LAM biosynthesis demonstrated that the enzyme is somewhat tolerant substitution at this site. The enzyme recognizes the disaccharides with groups similar or smaller in size than the native hydroxyl (6-8), but not the disaccharide with the more sterically demanding methoxy group (5). The 2'-OH appears not form a critical hydrogen bonding interaction with the protein as the 2'-deoxy analog is a substrate for the enzyme.  相似文献   

13.
The O-antigenic polysaccharide of the Rhizobium etli CE3 lipopolysaccharide (LPS) was structurally characterized using chemical degradations (Smith degradation and beta-elimination of uronosyl residues) in combination with alkylation analysis, electrospray, and matrix-assisted laser desorption ionization-time of flight mass spectrometry, tandem mass spectrometry, and (1)H COSY and TOCSY nuclear magnetic resonance spectroscopy analyses of the native polysaccharide and the derived oligosaccharides. The polysaccharide was found to be a unique, relatively low molecular weight glycan having a fairly discrete size, with surprisingly little variation in the number of repeating units (degree of polymerization = 5). The polysaccharide is O-acetylated and contains a variety of O-methylated glycosyl residues, rendering the native glycan somewhat hydrophobic. The molecular mass of the major de-O-acetylated species, including the reducing end 3-deoxy-d-manno-2-octulosonic acid (Kdo) residue, is 3330 Da. The polysaccharide is comprised of a trisaccharide repeating unit having the structure -->4)-alpha-d-GlcpA-(1-->4)-[alpha-3-O-Me-6-deoxy-Talp-(1--> 3)]-alpha -l-Fucp-(1-->. The nonreducing end of the glycan is terminated with the capping sequence alpha-2,3, 4-tri-O-Me-Fucp-(1-->4)-alpha-d-GlcpA-(1-->, and the reducing end of the molecule consists of the non-repeating sequence -->3)-alpha-l-Fucp-(1-->3)-beta-d-Manp-(1-->3)-beta-QuiNA cp-(1-->4)-a lpha-Kdop-(2-->, where QuiNAc is N-acetylquinovosamine (2-N-acetamido-2,6-dideoxyglucose). The reducing end Kdo residue links the O-chain polysaccharide to the core region oligosaccharide, resulting in a unique location for a Kdo residue in LPS, removed four residues distally from the lipid A moiety. Structural heterogeneity in the O-chain arises mainly from the O-acetyl and O-methyl substitution. Methylation analysis using trideuteriomethyl iodide indicates that a portion of the 2,3,4-tri-O-methylfucosyl capping residues, typically 15%, are replaced with 2-O-methyl- and/or 2,3-di-O-methylfucosyl residues. In addition, approximately 25% of the 3,4-linked branching fucosyl residues and 10% of the 3-linked fucosyl residues are 2-O-methylated. A majority of the glucuronosyl residues are methyl-esterified at C-6. These unique structural features may be significant in the infection process.  相似文献   

14.
alpha-Galactosyl epitopes are carbohydrate structures bearing an alpha-Gal-(1-->3)-Gal terminus (alpha-Gal epitopes). The interaction of these epitopes on the surface of animal cells with anti alpha-Gal antibodies in human serum is believed to be the main cause in antibody-mediated hyperacute rejection in xenotransplantation. In this paper, conformational analysis of an N-linked alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp trisaccharide epitope was conducted in terms of each monosaccharide residue conformation, primary hydroxymethyl group configuration, and interglycosidic conformations. Selective 2D J-delta INEPT experiments have been carried out at three different temperatures to evaluate three-bond, long-range 13C-1H coupling constants for the crucial alpha-(1-->3) linkage. The NMR experimental data were complemented by theoretical calculations. The flexibility and dynamics of the trisaccharide have been studied by Metropolis Monte Carlo simulations. Ensemble-averaged three-bond, long-range 13C-1H coupling constants and nuclear Overhauser effects were in good agreement with the experimental data. The alpha-(1-->3) glycosidic linkage has shown a restricted flexibility as indicated by NMR spectroscopy and molecular modeling.  相似文献   

15.
Asnani A  Auzanneau FI 《Carbohydrate research》2008,343(10-11):1653-1664
Three analogues of the Le(x) trisaccharide: alpha-L-Fucp-(1-->3)-[beta-D-Galp-(1-->4)]-D-GlcNAcp as well as the Le(x) trisaccharide itself were synthesized as methyl glycosides. In the analogues, either only the fucose residue is replaced by rhamnose or both the N-acetylglucosamine and the fucosyl residues are replaced by glucose and rhamnose, respectively. Our synthetic strategy relied on the use of lactoside and 2-azido lactoside derivatives as disaccharide acceptors, which were submitted to either fucosylation or rhamnosylation. Our results confirm that the reactivity of lactose in protection and glycosylation reactions is greatly affected by (1) the structure of the aglycone and (2) the presence of an azido substituent at C-2 of the glucose moiety. Thus, a methyl lactoside acceptor was easily glycosylated at O-3 with perbenzylated beta-thiophenyl fucoside and rhamnoside to give anomerically pure alpha-fucosylated and alpha-rhamnosylated trisaccharides, respectively. In contrast, the same reactions on a 2-azido methyl lactoside acceptor led to the formation of anomeric mixtures. While the alpha- and beta-fucosylated 2-azido trisaccharides could be separated by RP-HPLC, such separation was not possible for the rhamnosylated anomers. The desired rhamnosylated trisaccharide was finally obtained anomerically pure using an isopropylidene-protected rhamnosyl donor. The deprotection sequences also showed that the presence of a 2-azido substituent at C-2 of the glucose residue conferred stability to the vicinal fucosidic linkage at C-3. To test their relative affinity for anti-Le(x) Abs the Le(x) analogues will be used as competitive inhibitors against methyl Le(x). In addition, their conformational behavior will be studied by NMR spectroscopy and molecular modeling experiments.  相似文献   

16.
The lactonisation of alpha-Neup5Ac-(2-->8)-alpha-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-D-Glc (disialyl lactose) was investigated. (1)H and (13)C NMR chemical shifts of disialyl lactose and alpha-Neup5Ac-(2-->8, 1-->9)-alpha-Neup5Ac-(2-->3, 1-->2)-beta-D-Galp-(1-->4)-D-Glc (disialyl lactose-dilactone) were assigned based on 1D and 2D NMR results, including edited HSQC, HSQC-TOSCY and HMBC. The time course of lactonisation was followed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) with electrospray ionisation (ESI) mass spectrometry (MS) detection. The rate of lactonisation between alpha-(8)Neu5Ac and alpha-(3)Neu5Ac residues (lactonisation at the alpha-(2-->8) linkage) was faster than that of lactonisation between alpha-(3)Neu5Ac and Gal residues (lactonisation at the alpha-(2-->3) linkage). The mass spectra of disialyl lactose, its lactones, alpha-Neup5Ac-(2-->8)-alpha-Neup5Ac (alpha-(2-->8) disialic acid) and alpha-Neup5Ac-(2-->3)-beta-D-Galp-(1-->4)-D-Glc-lactone (3'-sialyllactose-lactone) showed that the alpha-(2-->8) linkage between Neu5Ac residues is difficult to cleave in the ESI-MS, compared with the alpha-(2-->3) linkage between Neu5Ac and Gal residues.  相似文献   

17.
The first total synthesis of alpha-(2-->3)/alpha-(2-->6)-disialyl lactotetraosyl (DSLc4) ceramide and alpha-(2-->3)/alpha-(2-->6)-disialyl Lewis A (DSLe(a)) ganglioside as cancer-associated antigens is described. The suitably protected lactotriose (Lc3) derivatives were successively glycosylated with sialic acid, sialyl-alpha-(2-->3)-D-galactose and/or L-fucose donors in a regio- and stereo-selective manner, to give the protected type I hexa- and hepta-saccharides, respectively, which were then converted to the target gangliosides by the introduction of ceramide and subsequent complete deprotection.  相似文献   

18.
Nigerose and nigerooligosaccharides served as acceptors for a glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus to give a series of homologous acceptor products. The soluble oligosaccharides (dp 5-9) strongly activated the acceptor reaction, resulting in the accumulation of water-insoluble (1-->3)-alpha-D-glucan. The enzyme transferred the labeled glucosyl residue from D-[U-13C]sucrose to the 3-hydroxyl group at the non-reducing end of the (1-->3)-alpha-D-oligosaccharides, as unequivocally shown by NMR 13C-13C coupling patterns. The values of the 13C-13C one-bond coupling constant (1J) are also presented for the C-1-C-6 of the 13C-labeled alpha-(1-->3)-linked glucosyl residue and of the non-reducing-end residue.  相似文献   

19.
Glucosyltransferase and glucanotransferase involved in the production of cyclic tetrasaccharide (CTS; cyclo [-->6]-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->6)-alpha-D-glucopyranosyl-(1-->3)-alpha-D-glucopyranosyl-(1-->)) from alpha-1,4-glucan were purified from Bacillus globisporus C11. The former was a 1,6-alpha-glucosyltransferase (6GT) catalyzing the a-1,6-transglucosylation of one glucosyl residue to the nonreducing end of maltooligosaccharides (MOS) to produce alpha-isomaltosyl-MOS from MOS. The latter was an isomaltosyl transferase (IMT) catalyzing alpha-1,3-, alpha-1,4-, and alpha,beta-1,1-intermolecular transglycosylation of isomaltosyl residues. When IMT catalyzed alpha-1,3-transglycosylation, alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS was produced from alpha-isomaltosyl-MOS. In addition, IMT catalyzed cyclization, and produced CTS from alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS by intramolecular transglycosylation. Therefore, the mechanism of CTS synthesis from MOS by the two enzymes seemed to follow three steps: 1) MOS-->alpha-isomaltosyl-->MOS (by 6GT), 2) alpha-isomaltosyl-MOS-->alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS (by IMT), and 3) alpha-isomaltosyl-(1-->3)-alpha-isomaltosyl-MOS-->CTS + MOS (by IMT). The molecular mass of 6GT was estimated to be 137 kDa by SDS-PAGE. The optimum pH and temperature for 6GT were pH 6.0 and 45 degrees C, respectively. This enzyme was stable at from pH 5.5 to 10 and on being heated to 40 degrees C for 60 min. 6GT was strongly activated and stabilized by various divalent cations. The molecular mass of IMT was estimated to be 102 kDa by SDS-PAGE. The optimum pH and temperature for IMT were pH 6.0 and 50 degrees C, respectively. This enzyme was stable at from pH 4.5 to 9.0 and on being heated to 40 degrees C for 60 min. Divalent cations had no effect on the stability or activity of this enzyme.  相似文献   

20.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号