共查询到20条相似文献,搜索用时 0 毫秒
1.
Chan J Whitten AE Jeffries CM Bosanac I Mal TK Ito J Porumb H Michikawa T Mikoshiba K Trewhella J Ikura M 《Journal of molecular biology》2007,373(5):1269-1280
Cytoplasmic Ca2+ signals are highly regulated by various ion transporters, including the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), which functions as a Ca2+ release channel on the endoplasmic reticulum membrane. Crystal structures of the two N-terminal regulatory regions from type 1 IP(3)R have been reported; those of the IP(3)-binding core (IP(3)R(CORE)) with bound IP(3), and the suppressor domain. This study examines the structural effects of ligand binding on an IP(3)R construct, designated IP(3)R(N), that contains both the IP(3)-binding core and the suppressor domain. Our circular dichroism results reveal that the IP(3)-bound and IP(3)-free states have similar secondary structure content, consistent with preservation of the overall fold within the individual domains. Thermal denaturation data show that, while IP(3) has a large effect on the stability of IP(3)R(CORE), it has little effect on IP(3)R(N), indicating that the suppressor domain is critical to the stability of IP(3)R(N). The NMR data for IP(3)R(N) provide evidence for chemical exchange, which may be due to protein conformational dynamics in both apo and IP(3)-bound states: a conclusion supported by the small-angle X-ray scattering data. Further, the scattering data show that IP(3)R(N) undergoes a change in average conformation in response to IP(3) binding and the presence of Ca2+ in the solution. Taken together, these data lead us to propose that there are two flexible linkers in the N-terminal region of IP(3)R that join stably folded domains and give rise to an equilibrium mixture of conformational sub-states containing compact and more extended structures. IP(3) binding drives the conformational equilibrium toward more compact structures, while the presence of Ca2+ drives it to a more extended set. 相似文献
2.
Mitochondria modulate cellular Ca2+ signals by accumulating the ion via a uniporter and releasing it via Na+- or H+-exchange. In smooth muscle, inhibition of mitochondrial Ca2+ uptake inhibits Ca2+ release from the sarcoplasmic reticulum (SR) via inositol-1,4,5-trisphosphate-sensitive receptors (IP3R). At least two mechanisms may explain this effect. First, localised uptake of Ca2+ by mitochondria may prevent negative feedback by cytosolic Ca2+ on IP3R activity, or secondly localised provision of Ca2+ by mitochondrial efflux may maintain IP3R function or SR Ca2+ content. To distinguish between these possibilities the role of mitochondrial Ca2+ efflux on IP3R function was examined. IP3 was liberated in freshly isolated single colonic smooth muscle cells and mitochondrial Na+–Ca2+ exchanger inhibited with CGP-37157 (10 μM). Mitochondria accumulated Ca2+ during IP3-evoked [Ca2+]c rises and released the ion back to the cytosol (within 15 s) when mitochondrial Ca2+ efflux was active. When mitochondrial Ca2+ efflux was inhibited by CGP-37157, an extensive and sustained loading of mitochondria with Ca2+ occurred after IP3-evoked Ca2+ release. IP3-evoked [Ca2+]c rises were initially unaffected, then only slowly inhibited by CGP-37157. IP3R activity was required for inhibition to occur; incubation with CGP-37157 for the same duration without IP3 release did not inhibit IP3R. CGP-37157 directly inhibited voltage-gated Ca2+ channel activity, however SR Ca2+ content was unaltered by the drug. Thus, the gradual decline of IP3R function that followed mitochondrial Na+–Ca2+ exchanger inhibition resulted from a gradual overload of mitochondria with Ca2+, leading to a reduced capacity for Ca2+ uptake. Localised uptake of Ca2+ by mitochondria, rather than mitochondrial Ca2+ efflux, appears critical for maintaining IP3R activity. 相似文献
3.
S Marchi M Marinello A Bononi M Bonora C Giorgi A Rimessi P Pinton 《Cell death & disease》2012,3(5):e304
Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt. 相似文献
4.
Paula J. Bartlett Walson Metzger Lawrence D. Gaspers Andrew P. Thomas 《The Journal of biological chemistry》2015,290(30):18519-18533
How Ca2+ oscillations are generated and fine-tuned to yield versatile downstream responses remains to be elucidated. In hepatocytes, G protein-coupled receptor-linked Ca2+ oscillations report signal strength via frequency, whereas Ca2+ spike amplitude and wave velocity remain constant. IP3 uncaging also triggers oscillatory Ca2+ release, but, in contrast to hormones, Ca2+ spike amplitude, width, and wave velocity were dependent on [IP3] and were not perturbed by phospholipase C (PLC) inhibition. These data indicate that oscillations elicited by IP3 uncaging are driven by the biphasic regulation of the IP3 receptor by Ca2+, and, unlike hormone-dependent responses, do not require PLC. Removal of extracellular Ca2+ did not perturb Ca2+ oscillations elicited by IP3 uncaging, indicating that reloading of endoplasmic reticulum stores via plasma membrane Ca2+ influx does not entrain the signal. Activation and inhibition of PKC attenuated hormone-induced Ca2+ oscillations but had no effect on Ca2+ increases induced by uncaging IP3. Importantly, PKC activation and inhibition differentially affected Ca2+ spike frequencies and kinetics. PKC activation amplifies negative feedback loops at the level of G protein-coupled receptor PLC activity and/or IP3 metabolism to attenuate IP3 levels and suppress the generation of Ca2+ oscillations. Inhibition of PKC relieves negative feedback regulation of IP3 accumulation and, thereby, shifts Ca2+ oscillations toward sustained responses or dramatically prolonged spikes. PKC down-regulation attenuates phenylephrine-induced Ca2+ wave velocity, whereas responses to IP3 uncaging are enhanced. The ability to assess Ca2+ responses in the absence of PLC activity indicates that IP3 receptor modulation by PKC regulates Ca2+ release and wave velocity. 相似文献
5.
M.Anglica Carrasco Silvia Figueroa 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1995,110(4)
Frog skeletal muscle contains a kinase activity that phosphorylates inositol 1,4,5-trisphosphate to inositol 1,3,4,5-tetrakisphosphate. The inositol 1,4,5-trisphosphate 3-kinase activity was mainly recovered in the soluble fraction, where it presented a marked dependency on free calcium concentration in the physiological range in the presence of endogenous calmodulin. At pCa 5, where the activity was highest, the soluble 3-kinase activity displayed a Km for inositol 1,4,5-trisphosphate of 1.6 μM and a Vmax value of 25.1 pmol mg−1 min−1. The removal rates of inositol 1,4,5-trisphosphate by 3-kinase and 5-phosphatase activities of the total homogenate under physiological ionic conditions were very similar, suggesting that both routes are equally important in metabolizing inositol 1,4,5-trisphosphate in frog skeletal muscle. 相似文献
6.
Miranda S. C. Wilson Simon J. Bulley Francesca Pisani Robin F. Irvine Adolfo Saiardi 《Open biology》2015,5(3)
Inositol phosphates are a large and diverse family of signalling molecules. While
genetic studies have discovered important functions for them, the biochemistry
behind these roles is often not fully characterized. A key obstacle in inositol
phosphate research in mammalian cells has been the lack of straightforward
techniques for their purification and analysis. Here we describe the ability of
titanium dioxide (TiO2) beads to bind inositol phosphates. This
discovery allowed the development of a new purification protocol that, coupled
with gel analysis, permitted easy identification and quantification of
InsP6 (phytate), its pyrophosphate derivatives InsP7
and InsP8, and the nucleotides ATP and GTP from cell or tissue
extracts. Using this approach, InsP6, InsP7 and
InsP8 were visualized in Dictyostelium extracts
and a variety of mammalian cell lines and tissues, and the effects of metabolic
perturbation on these were explored. TiO2 bead purification also
enabled us to quantify InsP6 in human plasma and urine, which led to
two distinct but related observations. Firstly, there is an active
InsP6 phosphatase in human plasma, and secondly, InsP6
is undetectable in either fluid. These observations seriously question reports
that InsP6 is present in human biofluids and the advisability of
using InsP6 as a dietary supplement. 相似文献
7.
Bai GR Yang LH Huang XY Sun FZ 《Biochemical and biophysical research communications》2006,348(4):1319-1327
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels. 相似文献
8.
Meenakshisundaram Ananthanarayanan Jesus M. Banales Mateus T. Guerra Carlo Spirli Patricia Munoz-Garrido Kisha Mitchell-Richards Denisse Tafur Elena Saez Michael H. Nathanson 《The Journal of biological chemistry》2015,290(1):184-196
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca2+ waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca2+ signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3′-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3–3′UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca2+ signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca2+ signaling and secretion. 相似文献
9.
10.
The major secretory granule proteins chromogranins A (CGA) and B (CGB) have recently been shown to play critical roles in inositol 1,4,5-trisphosphate-dependent intracellular Ca(2+) mobilizations. We determined here the subcellular distribution of CGA and CGB based on 3D-images of chromaffin cells, and found that approximately 95% of cellular CGA was present in secretory granules while approximately 5% was in the endoplasmic reticulum (ER), whereas approximately 57% of cellular CGB was in secretory granules while approximately 24% and approximately 19% were in the ER and nucleus, respectively. These results suggest that chromogranins are at the center of intracellular Ca(2+) homeostasis in secretory cells. 相似文献
11.
Kurokawa M Sato K Fissore RA 《Biology of the cell / under the auspices of the European Cell Biology Organization》2004,96(1):37-45
In mammalian eggs, the fertilizing sperm evokes intracellular Ca2+ ([Ca2+]i) oscillations that are essential for initiation of egg activation and embryonic development. Although the exact mechanism leading to initiation of [Ca2+]i oscillations still remains unclear, accumulating studies suggest that a presently unknown substance, termed sperm factor (SF), is delivered from the fertilizing sperm into the ooplasm and triggers [Ca2+]i oscillations. Based on findings showing that production of inositol 1,4,5-trisphosphate (IP3) underlies the generation of [Ca2+]i oscillations, it has been suggested that SF functions either as a phospholipase C (PLC), an enzyme that catalyzes the generation of IP3, or as an activator of a PLC(s) pre-existing in the egg. This review discusses the role of SF as the molecule responsible for the production of IP3 and the initiator of [Ca2+]i oscillations in mammalian fertilization, with particular emphasis on the possible involvement of egg- and sperm-derived PLCs, including PLCzeta, a novel sperm specific PLC. 相似文献
12.
13.
Hajime Hirase Youichi Iwai Norio Takata Yoshiaki Shinohara Tsuneko Mishima 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2014,369(1654)
The influence of astrocytes on synaptic function has been increasingly studied, owing to the discovery of both gliotransmission and morphological ensheathment of synapses. While astrocytes exhibit at best modest membrane potential fluctuations, activation of G-protein coupled receptors (GPCRs) leads to a prominent elevation of intracellular calcium which has been reported to correlate with gliotransmission. In this review, the possible role of astrocytic GPCR activation is discussed as a trigger to promote synaptic plasticity, by affecting synaptic receptors through gliotransmitters. Moreover, we suggest that volume transmission of neuromodulators could be a biological mechanism to activate astrocytic GPCRs and thereby to switch synaptic networks to the plastic mode during states of attention in cerebral cortical structures. 相似文献
14.
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites ‘mini’-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR. 相似文献
15.
Serena C. Hedgepeth M. Iveth Garcia Larry E. Wagner II Ana M. Rodriguez Sree V. Chintapalli Russell R. Snyder Gary D. V. Hankins Beric R. Henderson Kirsty M. Brodie David I. Yule Damian B. van Rossum Darren Boehning 《The Journal of biological chemistry》2015,290(11):7304-7313
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed endoplasmic reticulum (ER)-resident calcium channel. Calcium release mediated by IP3Rs influences many signaling pathways, including those regulating apoptosis. IP3R activity is regulated by protein-protein interactions, including binding to proto-oncogenes and tumor suppressors to regulate cell death. Here we show that the IP3R binds to the tumor suppressor BRCA1. BRCA1 binding directly sensitizes the IP3R to its ligand, IP3. BRCA1 is recruited to the ER during apoptosis in an IP3R-dependent manner, and, in addition, a pool of BRCA1 protein is constitutively associated with the ER under non-apoptotic conditions. This is likely mediated by a novel lipid binding activity of the first BRCA1 C terminus domain of BRCA1. These findings provide a mechanistic explanation by which BRCA1 can act as a proapoptotic protein. 相似文献
16.
Joseph SK Hajnóczky G 《Apoptosis : an international journal on programmed cell death》2007,12(5):951-968
Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of
Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP3Rs in apoptosis may be independent of their ion-channel function. The role of IP3Rs in delivering Ca2+ to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial
proximity of mitochondria and ER membranes. 相似文献
17.
18.
Shank protein is one of the postsynaptic density (PSD) proteins which play a major role in proper localization of proteins
at membranes. The shn-1, a homolog of Shank in Caenorhabditis elegans, is expressed in neurons, pharynx, intestine, vulva and sperm. We have previously reported a possible genetic interaction
between Shank and IP3 receptor by examining shn-1 RNAi in IP3 receptor (itr-1) mutant background. In order to show the direct interaction of Shank and IP3 receptor as well as to show the direct in vivo function of Shank, we have characterized two different mutant alleles of shn-1, which have different deletions in the different domains. shn-1 mutants were observed for Ca2+-related behavioral defects with itr-1 mutants. We found that only shn-1 mutant defective in ANK repeat-domain showed significant defects in defecation, pharyngeal pumping and fertility. In addition,
we found that shn-1 regulates defecation, pharyngeal pumping and probably male fertility with itr-1. Thus, we suggest that Shank ANK repeat-domain along with PDZ may play a crucial role in regulating Ca2+-signaling with IP3 receptor. 相似文献
19.
Yoo SH 《Cell calcium》2011,50(2):175-183
The majority of secretory cell calcium is stored in secretory granules that serve as the major IP3-dependent intracellular Ca2+ store. Even in unicellular phytoplankton secretory granules are responsible for the IP3-induced Ca2+ release that triggers exocytosis. The number of secretory granules in the cell is directly related not only to the magnitude of IP3-induced Ca2+ release, which accounts for the majority of the IP3-induced cytoplasmic Ca2+ release in neuroendocrine cells, but also to the IP3 sensitivity of the cytoplasmic IP3 receptor (IP3R)/Ca2+ channels. Moreover, secretory granules contain the highest IP3R concentrations and the largest amounts of IP3Rs in any subcellular organelles in neuroendocrine cells. Secretory granules from phytoplankton to mammals contain large amounts of polyanionic molecules, chromogranins being the major molecules in mammals, in addition to acidic intragranular pH and high Ca2+ concentrations. The polyanionic molecules undergo pH- and Ca2+-dependent conformational changes that serve as a molecular basis for condensation-decondensation phase transitions of the intragranular matrix. Likewise, chromogranins undergo pH- and Ca2+-dependent conformational changes with increased exposure of the structure and increased interactions with Ca2+ and other granule components at acidic pH. The unique physico-chemical properties of polyanionic molecules appear to be at the center of biogenesis, and physiological functions of secretory granules in living organisms from primitive to advanced species. 相似文献
20.
Yun Liu Ruixiang Hu Huanjia Shen Qinxin Mo Xinqiuyue Wang Guiping Zhang Sujuan Li Guanfeng Liang Ning Hou Jiandong Luo 《International journal of biological sciences》2021,17(13):3672
Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure. 相似文献