首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

2.
The potential of a fungal pretreatment combined with a mild alkali treatment to replace or complement current physico-chemical methods for ethanol production from wheat straw has been investigated. Changes in substrate composition, secretion of ligninolytic enzymes, enzymatic hydrolysis efficiency and ethanol yield after 7, 14 and 21 days of solid-state fermentation were evaluated. Most fungi degraded lignin with variable selectivity degrees, although only eight of them improved sugar recovery compared to untreated samples. Glucose yield after 21 days of pretreatment with Poria subvermispora and Irpex lacteus reached 69% and 66% of cellulose available in the wheat straw, respectively, with an ethanol yield of 62% in both cases. Conversions from glucose to ethanol reached around 90%, showing that no inhibitors were generated during this pretreatment. No close correlations were found between ligninolytic enzymes production and sugar yields.  相似文献   

3.
Solid-state anaerobic digestion of spent wheat straw from horse stall   总被引:6,自引:0,他引:6  
Cui Z  Shi J  Li Y 《Bioresource technology》2011,102(20):9432-9437
The spent wheat straw from horse stall bedding has lower cellulose and hemicellulose contents, but higher volatile fatty acid content than raw wheat straw. Biogas production from solid-state anaerobic digestion (SS-AD) of spent wheat straw and raw wheat straw was compared in this study. The SS-AD tests were conducted at 22% total solids (TS) content using inoculum from a liquid AD system at three feedstock-to-inoculum (F/I) ratios of 2.0, 4.0, and 6.0. Daily methane yields of spent wheat straw peaked 8 and 3 days earlier than those of raw wheat straw at F/I ratios of 2.0 and 4.0, respectively. The highest methane yield of 150.0 L/kg volatile solids (VS) was obtained from spent wheat straw at an F/I ratio of 4.0, which was 56.2% higher than that of raw wheat straw. The corresponding cellulose and hemicellulose degradation of spent wheat straw was 24.1% and 49.4% higher than those of raw wheat straw, respectively.  相似文献   

4.
In this work we compared the efficiency of a laccase treatment performed on steam-exploded wheat straw pretreated under soft conditions (water impregnation) or harsh conditions (impregnation with diluted acid). The effect of several enzymatic treatment parameters (pH, time of incubation, laccase origin and loading) was analysed. The results obtained indicated that severity conditions applied during steam explosion have an influence on the efficiency of detoxification. A reduction of the toxic effect of phenolic compounds by laccase polymerization of free phenols was demonstrated. Laccase treatment of steam-exploded wheat straw reduced sugar recovery after enzymatic hydrolysis, and it should be better performed after hydrolysis with cellulases. The fermentability of hydrolysates was greatly improved by the laccase treatment in all the samples. Our results demonstrate the action of phenolic compounds as fermentation inhibitors, and the advantages of a laccase treatment to increase the ethanol production from steam-exploded wheat straw.  相似文献   

5.
Batch production of xylitol from the hydrolysate of wheat straw hemicellulose using Candida guilliermondii was carried out in a stirred tank reactor (agitation speed of 300 rpm, aeration rate of 0.6 vvm and initial cell concentration of 0.5 g l–1). After 54 h, xylitol production from 30.5 g xylose l–1 reached 27.5 g l–1, resulting in a xylose-to-xylitol bioconversion yield of 0.9 g g–1 and a productivity of 0.5 g l–1 h–1.  相似文献   

6.
Biomethanation of rice and wheat straw   总被引:3,自引:0,他引:3  
When rice or wheat straw was added to cattle dung slurry and digested anaerobically, daily gas production increased from 176 to 331 l/kg total solids with 100% rice straw and to 194 l/kg total solids with 40% wheat straw. Not only was methane production enhanced by adding chopped crop residues but a greater biodegradability of organic matter in the straws was achieved.The authors are with the Microbiology and Molecular Genetics Unit, Tata Energy Research Institute, 158 Jor Bagh, New Delhi 110 003, India  相似文献   

7.
Recently, Mucor indicus was introduced as a promising ethanol producing microorganism for fermentation of lignocellulosic hydrolysates, showing a number of advantages over Saccharomyces cerevisiae. However, high nutrient requirement is the main drawback of the fungus in efficient ethanol production from lignocelluloses. In this study, application of fungal extract as a potential nutrient source replacing all required nutrients in fermentation of wheat straw by M. indicus was investigated. Wheat straw was pretreated with N-methylmorpholine-N-oxide (NMMO) at 120 °C for 1–5 h prior to enzymatic hydrolysis. Hydrolysis yield was improved at least by 6-fold for 3 h pretreated straw compared with that of untreated one. A fungal extract was produced by autolysis of M. indicus biomass, an unavoidable byproduct of fermentation. Maximum free amino nitrogen (2.04 g/L), phosphorus (1.50 g/L), and total nitrogen (4.47 g/L) as well as potassium, magnesium, and calcium in the fungal extract were obtained by autolysis of the biomass at 50 °C and pH 5.0. The fungal extract as a nutrient-rich supplement substituted yeast extract and all other required minerals in fermentation and enhanced the ethanol yield up to 92.1% of the theoretical yield. Besides, appreciate amounts of chitosan were produced as another valuable product of the autolysis.  相似文献   

8.
Zhong W  Zhang Z  Luo Y  Sun S  Qiao W  Xiao M 《Bioresource technology》2011,102(24):11177-11182
A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy.  相似文献   

9.
The aims of this work were to determine the specific biogas yields of steam-exploded sugarcane straw and bagasse as well as to estimate their energy potential under Brazilian conditions. Steam-explosion was carried out under different time and temperature conditions. The specific biogas yields were analyzed in batch-tests according to VDI 4630.Results have shown that steam-explosion pre-treatment increased the specific biogas yields of straw and bagasse significantly compared to the untreated material. The utilization of these by-products can contribute to 5% of the total energy consumption and thereby higher energy independence in Brazil. Further efforts in defining the optimum pretreatment conditions with steam-explosion as well as implementing this technology in large scale plants should be made.  相似文献   

10.
Characteristics of degraded cellulose obtained from steam-exploded wheat straw   总被引:13,自引:0,他引:13  
The isolation of cellulose from wheat straw was studied using a two-stage process based on steam explosion pre-treatment followed by alkaline peroxide post-treatment. Straw was steamed at 200 degrees C, 15 bar for 10 and 33 min, and 220 degrees C, 22 bar for 3, 5 and 8 min with a solid to liquid ratio of 2:1 (w/w) and 220 degrees C, 22 bar for 5 min with a solid to liquid ratio of 10:1, respectively. The steamed straw was washed with hot water to yield a solution rich in hemicelluloses-derived mono- and oligosaccharides and gave 61.3%, 60.2%, 66.2%, 63.1%, 60.3% and 61.3% of the straw residue, respectively. The washed fibre was delignified and bleached by 2% H2O2 at 50 degrees C for 5 h under pH 11.5, which yielded 34.9%, 32.6%, 40.0%, 36.9%, 30.9% and 36.1% (% dry wheat straw) of the cellulose preparation, respectively. The optimum cellulose yield (40.0%) was obtained when the steam explosion pre-treatment was performed at 220 degrees C, 22 bar for 3 min with a solid to liquid ratio of 2:1, in which the cellulose fraction obtained had a viscosity average degree of polymerisation of 587 and contained 14.6% hemicelluloses and 1.2% klason lignin. The steam explosion pre-treatment led to a significant loss in hemicelluloses and alkaline peroxide post-treatment resulted in substantial dissolution of lignin and an increase in cellulose crystallinity. The six isolated cellulose samples were further characterised by FT-IR and 13C-CP/MAS NMR spectroscopy and thermal analysis.  相似文献   

11.
Summary The incorporation of undecomposed wheat straw in the soil along-with the micro-organisms favourably increased the yield of groundnut crop. An increase of 37 per cent in yield was recorded when wheat straw was inoculated withPenicillium digitatum and the C:P ratio was adjusted to 65. Inoculated treatments of narrower C:P ratio gave a higher yield than wider C:P ratio treatments inoculated with the same cultures. An increase in nitrogen uptake by groundnut plants was recorded due to incorporation of straw alongwith the micro-organisms in soil. The organic carbon and nitrogen content of the soil increased with all the treatments except control. The highest increase in organic carbon and nitrogen of the soil was observed with a treatment of wheat straw of 65 C:P ratio inoculated withS. coccosporum. The yield of wheat crop after groundnut was significantly more with several treatments than control plots. The highest increase of 79 per cent in grain yield of wheat was observed in the plots previouslq received with wheat straw of 200 C:P ratio.This paper is based on the data presented at IV Southern Regional Conference on Microbial Inoculants, held at Parbhani during 3–4 July 1978.  相似文献   

12.
Biotechnologically produced itaconic acid is an important building block for the chemical industry and still based on pure carbon sources, detoxified molasses or starch hydrolysates. Changing these first generation feedstocks to alternative renewable resources of a second generation implies new challenges for the cultivation process of the industrial itaconic acid producer Aspergillus terreus, which is known to be very sensitive towards impurities. To select a suitable pretreatment method of a second generation feedstock, the influences of different hydrolysate components, like monosaccharides and sugar degradation products, were tested. Particular the impact of those components on itaconic acid yield, productivity, titer and morphology was investigated in detail. Wheat chaff was used as lignocellulosic biomass, which is an agricultural residue. An alkaline pretreatment method with sodium hydroxide at room temperature and a subsequent enzymatic saccharification at pH 4.8 at 50 °C with 10 FPU/gBiomass Biogazyme 2x proved to be very suitable for a subsequent biotechnological production of itaconic acid. A purification by a cation exchanger of the wheat chaff hydrolysate resulted in a final titer of 27.7 g/L itaconic acid with a yield of 0.41 g/gtotal sugar.  相似文献   

13.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

14.
The effect of inoculum level on xylitol production byCandida guilliermondii was evaluated in a rice straw hemicellulose hydrolysate. High initial cell density did not show a positive effect in this bioconversion since increasing the initial cell density from 0.67 g L–1 to 2.41 g L–1 decreased both the rate of xylose utilization and xylitol accumulation. The maximum xylitol yield (0.71 g g–1) and volumetric productivity (0.56 g L–1 h–1) were reached with an inoculum level of 0.9 g L–1. These results show that under appropriate inoculum conditions rice straw hemicellulose hydrolysate can be converted into xylitol by the yeastC. guilliermondii with efficiency values as high as 77% of the theoretical maximum.  相似文献   

15.
Ethanol production was evaluated from wheat straw (WS) hemicellulose acid hydrolysate using an adapted and parent strain of Pichia stipitis. NRRL Y-7124. The treatment by boiling and overliming with Ca(OH)(2) significantly improved the fermentability of the hydrolysate. Ethanol yield (Yp/s) and productivity (Qp av) were increased 2.4+/-0.10 and 5.7+/-0.24 folds, respectively, compared to neutralized hydrolysate. Adaptation of the yeast to the hydrolysate resulted further improvement in yield and productivity. The maximum yield was 0.41+/-0.01 g(p) g(s)(-1), equivalent to 80.4+/-0.55% theoretical conversion efficiency. Acetic acid, furfurals and lignins present in the hydrolysate were inhibitory to microbial growth and ethanol production. The addition of these inhibitory components individually or in various combinations at a concentrations similar to that found in hydrolysate to simulated medium resulted a reduction in ethanol yield (Yp/s) and productivity (Qp av). The hydrolysate used had the following composition (expressed in g x l(-1)): xylose 12.8+/-0.25; glucose 1.7+/-0.3; arabinose 2.6+/-0.21 and acetic acid 2.7+/-0.33.  相似文献   

16.
A simple process (the direct-saccharification-of-culms (DiSC) process) to produce ethanol from rice straw culms, accumulating significant amounts of soft carbohydrates (SCs: glucose, fructose, sucrose, starch and β-1,3-1,4-glucan) was developed. This study focused on fully mature culms of cv. Leafstar, containing 69.2% (w/w of dried culms) hexoses from SCs and cellulose. Commercially-available wind-separation equipment successfully prepared a culm-rich fraction with a SC recovery of 83.1% (w/w) from rice straw flakes (54.1% of total weight of rice straw). The fraction was suspended in water (20%, w/w) for starch liquefaction, and the suspension was subjected to a simultaneous saccharification and fermentation with yeast, yielding 5.6% (w/v) ethanol (86% of the theoretical yield from whole hexoses in the fraction) after 24 h fermentation. Thus, the DiSC process produced highly-concentrated ethanol from rice straw in a one vat process without any harsh thermo-chemical pretreatments.  相似文献   

17.
Lu X  Xi B  Zhang Y  Angelidaki I 《Bioresource technology》2011,102(17):7937-7940
The energy efficiency of microwave-assisted dilute sulfuric acid pretreatment of rape straw for the production of ethanol was investigated. Different microwave energy inputs and solid loadings were tested to find economic pretreatment conditions. The lowest energy consumption was observed when solid loading and energy input were fixed at 50% (w/w) and 54 kJ (900 W for 1 min), respectively, and amounted to 5.5 and 10.9 kJ to produce 1 g of glucose after enzymatic hydrolysis and 1 g ethanol after fermentation, respectively. In general, 1 g ethanol can produce about 30 kJ of energy, and therefore, the energy input for the pretreatment was only 35% of the energy output. The approach developed in this study resulted in 92.9% higher energy savings for producing 1 g ethanol when compared with the results of microwave pretreatments previously reported.  相似文献   

18.
Wang HY  Fan BQ  Li CH  Liu S  Li M 《Bioresource technology》2011,102(11):6515-6521
The effects of biosurfactant rhamnolipid (RL) and chemical surfactant Triton X-100 on the production of cellulases and xylanase from Penicillium expansum (P. expansum) in untreated, acid- and alkali-pretreated wheat straw submerged fermentations were studied, and the influences on the activity and stability of Cellulase R-10 were also investigated. The results showed that RL and Triton X-100 enhanced the activities of cellulases and xylanase to different extents and the stimulatory effects of RL were superior to those of Triton X-100. During the peak enzyme production phase, RL (60 RE mg/l) increased cellulases activities by 25.5-102.9%, in which the raise of the same enzyme in acid-pretreated straw broths was the most. It was found that the reducing sugars by hydrolyzing wheat straw with Cellulase R-100 were not visibly increased after adding RL. However, it distinctly protected Cellulase R-10 from degradation or inactivation, keeping the reducing sugars yield at about 17%.  相似文献   

19.
The hydrolysis kinetics of steam-exploded wheat straw treated with cellulase NS 50013 enzyme complex in combination with β-glucosidase NS 50010 is studied. The time dependence of the reducing sugars amount is followed at varying the temperature value and the amount of the enzyme introduced. The activation energy determined on the ground of the rate temperature dependence stays unchanged in the course of the process. The preexponential factor decreases with the increase of the degree of hydrolysis and is responsible for the process rate decrease. A new expression for the dependence of degree of hydrolysis of one of carbohydrate polymers (cellulose) in wheat straw on the time, the enzyme concentration and the temperature is obtained. It is of practical importance as well because it provides estimation of the degree of hydrolysis required at predetermined values of the temperature, the enzyme concentration and the time used. The expression can be used for control of the enzyme hydrolysis of cellulose in the wheat straw.  相似文献   

20.
Wi SG  Chung BY  Lee YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(10):5788-5793
The objective of this study was to find a pretreatment process that enhances enzymatic conversion of biomass to sugars. Rapeseed straw was pretreated by two processes: a wet process involving wet milling plus a popping treatment, and a dry process involving popping plus dry milling. The effects of the pretreatments were studied both in terms of structural and compositional changes and change in susceptibility to enzymatic hydrolysis. After application of the wet and dry processes, the amounts of cellulose and xylose in the straw were 37-38% and 14-15%, respectively, compared to 31% and 12% in untreated counterparts. In enzymatic hydrolysis performance, the wet process presented the best glucose yield, with a 93.1% conversion, while the dry process yielded 69.6%, and the un-pretreated process yielded <20%. Electron microscopic studies of the straw also showed a relative increase in susceptibility to enzymatic hydrolysis with pretreatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号