首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus   总被引:3,自引:0,他引:3  
Uracil-DNA glycosylase (UDG) is an essential enzyme for maintaining genomic integrity. Here we describe a UDG from the extreme thermophile Archaeoglobus fulgidus. The enzyme is a member of a new class of enzymes found in prokaryotes that is distinct from the UDG enzyme found in Escherichia coli, eukaryotes, and DNA-containing viruses. The A. fulgidus UDG is extremely thermostable, maintaining full activity after heating for 1.5 h at 95 degrees C. The protein is capable of removing uracil from double-stranded DNA containing either a U/A or U/G base pair as well as from single-stranded DNA. This enzyme is product-inhibited by both uracil and apurinic/apyrimidinic sites. The A. fulgidus UDG has a high degree of similarity at the primary amino acid sequence level to the enzyme found in Thermotoga maritima, a thermophilic eubacteria, and suggests a conserved mechanism of UDG-initiated base excision repair in archaea and thermophilic eubacteria.  相似文献   

2.
Archaeoglobus fulgidus is an extremely thermophilic, sulphate reducing archaebacterium thought to represent a biochemical missing-link between sulphur-metabolizing bacteria and methanogenic bacteria. Whereas the phylogenetic position of A.fulgidus is closer to the sulphur-metabolizing bacteria, there is a partial overlap in the biochemical machinery of A.fulgidus with both groups of bacteria. In particular, the presence of a number of aberrant cofactors up to now thought to be involved exclusively in the process of methanogenesis in methanogenic archaebacteria, i.e. coenzyme F420, methanofuran and methanopterin, has been indicated by previous studies. Here we present evidence for the structural identity of the methanopterin cofactor of A.fulgidus with the methanopterin isolated from Methanobacterium thermoautotrophicum and show that this non-methanogenic bacterium contains two as yet unknown analogues of coenzyme F420. The levels of the various cofactors were determined in cultures grown either on formate or lactate as the carbon source and sulphate or thiosulphate as the sulphur source.  相似文献   

3.
The esterase from the thermophilic eubacterium Bacillus acidocaldarius is a thermophilic and thermostable monomeric protein with a molecular mass of 34 KDa. The enzyme, characterized as a "B-type" carboxylesterase, displays the maximal activity at 65 degrees C. Interestingly, it is also quite active at room temperature, an unusual feature for an enzyme isolated from a thermophilic microorganism. We investigated the effect of temperature on the structural properties of the enzyme, and compared its structural features with those of the esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus. In particular, the secondary structure and the thermal stability of the esterase were studied by FT-IR spectroscopy, while information on the conformational dynamics of the enzyme were obtained by frequency-domain fluorometry and anisotropy decays. Our data pointed out that the Bacillus acidocaldarius enzyme possesses a secondary structure rich in alpha-helices as described for the esterase isolated from Archaeoglobus fulgidus. Moreover, infrared spectra indicated a higher accessibility of the solvent ((2)H(2)O) to Bacillus acidocaldarius esterase than to Archaeoglobus fulgidus enzyme suggesting, in turn, a less compact structure of the former enzyme. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the Bacillus acidocaldarius protein was well represented by the three-exponential model, and that the temperature affected the protein conformational dynamics. The data suggested an increase in the protein flexibility on increasing the temperature. Moreover, comparison of Bacillus acidocaldarius esterase with the Archaeoglobus fugidus enzyme fluorescence data indicated a higher flexibility of the former enzyme at all temperatures tested, supporting the infrared data and giving a possible explanation of its unusual relative high activity at low temperatures. Proteins 2000;40:473-481.  相似文献   

4.
Members of the genus Archaeoglobus are hyperthermophilic sulfate reducers with an optimal growth temperature of 83 degrees C. Archaeoglobus fulgidus can utilize simple compounds including D-lactate, L-lactate and pyruvate as the sole substrate for carbon and electrons for dissimilatory sulfate reduction. Previously we showed that this organism makes a D-lactate dehydrogenase (Dld) that requires FAD and Zn2+ for activity. To determine the cellular location and topology of Dld and to identify proteins that interact with Dld, an antibody directed against Dld was prepared. Immunocytochemical studies using gold particle-coated secondary antibodies show that more than 85% of Dld is associated with the membrane. A truncated form of Dld was detected in immunoblots of whole cells treated with protease, showing that Dld is an integral membrane protein and that a significant portion of Dld, including part of the FAD-binding pocket, is outside the membrane facing the S-layer. The gene encoding Dld is part of an operon that includes noxA2, which encodes one of several NADH oxidases in A. fulgidus. Previous studies have shown that NoxA2 remains bound to Dld during purification. Thin sections of A. fulgidus probed simultaneously with antibodies against Dld and NoxA2 show that both proteins co-localized to the same sites in the membrane. Although these data show a tight interaction between NoxA2 and Dld, the role of NoxA2 in electron transport reactions is unknown. Rather, NoxA2 may protect proteins involved in electron transfer by reducing O2 to H2O2 or H2O.  相似文献   

5.
Protein SRP19 is an important component of the signal recognition particle (SRP) as it promotes assembly of protein SRP54 with SRP RNA and recognizes a tetranucleotide loop. Structural features and RNA binding activities of SRP19 of the hyperthermophilic archaeon Archaeoglobus fulgidus were investigated. An updated alignment of SRP19 sequences predicted three conserved regions and two alpha-helices. With Af-SRP RNA the Af-SRP54 protein assembled into an A. fulgidus SRP which remained intact for many hours. Stable complexes were formed between Af-SRP19 and truncated SRP RNAs, including a 36-residue fragment representing helix 6 of A. fulgidus SRP RNA.  相似文献   

6.
The ABC of binding-protein-dependent transport in Archaea   总被引:1,自引:0,他引:1  
The recent solution of the crystal structure of an entire binding-protein-dependent ABC transporter complex from the archaeon Archaeoglobus fulgidus by Locher and his colleagues marks a milestone in the understanding of the ABC transport mechanism. The structure elegantly demonstrates how the motor ATPase alternately opens and closes the inside and outside pores of the transporter and how the substrate-binding protein delivers its substrate. Binding-protein-dependent sugar ABC transporters in the archaea and in bacteria have an additional feature that could connect ABC transporters to gene regulation and to the control of transport activity by cellular processes.  相似文献   

7.
A hyperthermophilic sulfate reducer, strain 7324, was isolated from hot (75 degrees C) oil field waters from an oil production platform in the Norwegian sector of the North Sea. It was enriched on a complex medium and isolated on lactate with sulfate. The cells were nonmotile, irregular coccoid to disc shaped, and 0.3 to 1.0 mum wide. The temperature for growth was between 60 and 85 degrees C with an optimum of 76 degrees C. Lactate, pyruvate, and valerate plus H(2) were utilized as carbon and energy sources with sulfate as electron acceptor. Lactate was completely oxidized to CO(2). The cells contained an active carbon monoxide dehydrogenase but no 2-oxoglutarate dehydrogenase activity, indicating that lactate was oxidized to CO(2) via the acetyl coenzyme A/carbon monoxide dehydrogenase pathway. The cells produced small amounts of methane simultaneously with sulfate reduction. F(420) was detected in the cells which showed a blue-green fluorescence at 420 nm. On the basis of morphological, physiological, and serological features, the isolate was classified as an Archaeoglobus sp. Strain 7324 showed 100% DNA-DNA homology with A. fulgidus Z, indicating that it belongs to the species A. fulgidus. Archaeoglobus sp. has been selectively enriched and immunomagnetically captured from oil field waters from three different platforms in the North Sea. Our results show that strain 7324 may grow in oil reservoirs at 70 to 85 degrees C and contribute to hydrogen sulfide formation in this environment.  相似文献   

8.
We used (13)C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 +/- 0.04%, +/- 2 standard deviations of the methane produced during growth) was less than that by M. barkeri (0.15 +/- 0.04%), grown under similar conditions with H(2) and CO(2). Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 +/- 0.05%) than during growth on methanol (0.07 +/- 0.03%). This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O(2), NO(3) (-), SO(4) (2-), SO(3) (2-)) or H(2) to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD(+) showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H(2) concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 +/- 0.01% of the methane provided to A. fulgidus, 0.002 +/- 0.009% to A. lithotrophicus and 0.003 +/- 0.02% to A. profundus). Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in this genus, is required for the anaerobic oxidation of methane, consistent with the "reverse methanogenesis" hypothesis.  相似文献   

9.
The genome sequence of Archaeoglobus fulgidus VC16 encodes three CO dehydrogenase genes. Here we explore the capacity of A. fulgidus to use CO as growth substrate. Archaeoglobus fulgidus VC16 was successfully adapted to growth medium that contained sulfate and CO. In the presence of CO and sulfate the culture OD(660) increased to 0.41 and sulfide, carbon dioxide, acetate and formate were formed. Accumulation of formate was transient. Similar results, except that no sulfide was formed, were obtained when sulfate was omitted. Hydrogen was never detected. Under the conditions tested, the observed concentrations of acetate (18 mM) and formate (8.2 mM) were highest in cultures without sulfate. Proton NMR spectroscopy indicated that CO2, and not CO, is the precursor of formate and the methyl group of acetate. Methylviologen-dependent formate dehydrogenase activity (1.4 micromol formate oxidized min(-1) mg(-1)) was detected in cell-free extracts and expected to have a role in formate reuptake. It is speculated that formate formation proceeds through hydrolysis of formyl-methanofuran or formyl-tetrahydromethanopterin. This study demonstrates that A. fulgidus can grow chemolithoautotrophically with CO as acetogen, and is not strictly dependent on the presence of sulfate, thiosulfate or other sulfur compounds as electron acceptor.  相似文献   

10.
Archaeoglobus fulgidus neelaredoxin (Nlr) is an electron donor:superoxide oxidoreductase. The reaction of superoxide with reduced Nlr is almost diffusion-limited, but the overall efficiency for detoxifying superoxide in vivo depends on the rate of reduction of Nlr by electron donors. Here, we report the purification and characterization of the two type I rubredoxins from A. fulgidus (AF0880 and AF1349) and show that they act as efficient electron donors for neelaredoxin, in vitro, with a second-order rate constant of 10(7)M(-1)s(-1) at 10 degrees C and pH 7.2.  相似文献   

11.
Oxidative DNA damage is caused by reactive oxygen species formed in cells as by products of aerobic metabolism or of oxidative stress. The 8-oxoguanine (8-oxoG) DNA glycosylase from Archaeoglobus fulgidus (Afogg), which excises an oxidatively-damaged form of guanine, was overproduced in Escherichia coli, purified and characterized. A. fulgidus is a sulfate-reducing archaeon, which grows at between 60 and 95 degrees C, with an optimum growth at 83 degrees C. The Afogg enzyme has both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activities, with the latter proceeding through a Schiff base intermediate. As expected for a protein from a hyperthermophilic organism, the enzyme activity is optimal near pH 8.5 and 60 degrees C, denaturing at 80 degrees C, and is thermally stable at high levels of salt (500mM). The Afogg protein efficiently cleaves oligomers containing 8-oxoG:C and 8-oxoG:G base pairs, and is less effective on oligomers containing 8-oxoG:T and 8-oxoG:A mispairs. While the catalytic action mechanism of Afogg protein is likely similar to the human Ogg1 (hOgg1), the DNA recognition mechanism and the basis for 8-oxoG substrate specificity of Afogg differ from that of hOgg.  相似文献   

12.
We present evidence that, in contrast to plasmids from other hyperthermophilic archaea, which are in the relaxed to positively supercoiled state, plasmid pGS5 (2.8 kb) from Archaeoglobus profundus is negatively supercoiled. This might be due to the presence of a gyrase introducing negative supercoils, since gyrase genes are present in the genome of its close relative A. fulgidus, and suggests that gyrase activity predominates over reverse gyrase whenever the two topoisomerases coexist in cells.  相似文献   

13.
14.
15.
BACKGROUND: Studies performed within the last decade have indicated that microbial reduction of Fe(III) to Fe(II) is a biologically significant process. The ferric reductase (FeR) from Archaeoglobus fulgidus is the first reported archaeal ferric reductase and it catalyzes the flavin-mediated reduction of ferric iron complexes using NAD(P)H as the electron donor. Based on its catalytic activity, the A. fulgidus FeR resembles the bacterial and eukaryotic assimilatory type of ferric reductases. However, the high cellular abundance of the A. fulgidus FeR (approximately 0.75% of the total soluble protein) suggests a catabolic role for this enzyme as the terminal electron acceptor in a ferric iron-based respiratory pathway [1]. RESULTS: The crystal structure of recombinant A. fulgidus FeR containing a bound FMN has been solved at 1.5 A resolution by multiple isomorphous replacement/ anomalous diffraction (MIRAS) phasing methods, and the NADP+- bound complex of FeR was subsequently determined at 1.65 A resolution. FeR consists of a dimer of two identical subunits, although only one subunit has been observed to bind the redox cofactors. Each subunit is organized around a six-stranded antiparallel beta barrel that is homologous to the FMN binding protein from Desulfovibrio vulgaris. This fold has been shown to be related to a circularly permuted version of the flavin binding domain of the ferredoxin reductase superfamily. The A. fulgidus ferric reductase is further distinguished from the ferredoxin reductase superfamily by the absence of a Rossmann fold domain that is used to bind the NAD(P)H. Instead, FeR uses its single domain to provide both the flavin and the NAD(P)H binding sites. Potential binding sites for ferric iron complexes are identified near the cofactor binding sites. CONCLUSIONS: The work described here details the structures of the enzyme-FMN, enzyme-FMN-NADP+, and possibly the enzyme-FMN-iron intermediates that are present during the reaction mechanism. This structural information helps identify roles for specific residues during the reduction of ferric iron complexes by the A. fulgidus FeR.  相似文献   

16.
Analyses of the F(420)s present in Methanococcus jannaschii have shown that these cells contain a series of gamma-glutamyl-linked F(420)s capped with a single, terminal alpha-linked L-glutamate. The predominant form of F(420) was designated as alpha-F(420)-3 and represented 86% of the F(420)s in these cells. Analyses of Methanosarcina thermophila, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, and Mycobacterium smegmatis showed that they contained only gamma-glutamyl-linked F(420)s.  相似文献   

17.
Archaeoglobus fulgidus is a hyperthermophilic sulphate-reducing archaeon. It has an optimum growth temperature of 83 degrees C and is described as a strict anaerobe. Its genome lacks any homologue of canonical superoxide (O2.-) dismutases. In this work, we show that neelaredoxin (Nlr) is the main O2.- scavenger in A. fulgidus, by studying both the wild-type and recombinant proteins. Nlr is a 125-amino-acid blue-coloured protein containing a single iron atom/molecule, which in the oxidized state is high spin ferric. This iron centre has a reduction potential of +230 mV at pH 7.0. Nitroblue tetrazolium-stained gel assays of cell-soluble extracts show that Nlr is the main protein from A. fulgidus which is reactive towards O2.-. Furthermore, it is shown that Nlr is able to both reduce and dismutate O2.-, thus having a bifunctional reactivity towards O2.-. Kinetic and spectroscopic studies indicate that Nlr's superoxide reductase activity may allow the cell to eliminate O2.- quickly in a NAD(P)H-dependent pathway. On the other hand, Nlr's superoxide dismutation activity will allow the cell to detoxify O2.- independently of the cell redox status. Its superoxide dismutase activity was estimated to be 59 U mg-1 by the xanthine/xanthine oxidase assay at 25 degrees C. Pulse radiolysis studies with the isolated and reduced Nlr proved unambiguously that it has superoxide dismutase activity; at pH 7.1 and 83 degrees C, the rate constant is 5 x 106 M-1 s-1. Besides the superoxide dismutase activity, soluble cell extracts of A. fulgidus also exhibit catalase and NAD(P)H/oxygen oxidoreductase activities. By putting these findings together with the entire genomic data available, a possible oxygen detoxification mechanism in A. fulgidus is discussed.  相似文献   

18.
Liu J  He B  Qing H  Kow YW 《Mutation research》2000,461(3):169-177
Deoxyadenosine undergoes spontaneous deamination to deoxyinosine in DNA. Based on amino acids sequence homology, putative homologs of endonuclease V were identified in several organisms including archaebacteria, eubacteria as well as eukaryotes. The translated amino acid sequence of the Archaeoglobus fulgidus nfi gene shows 39% identity and 55% similarity to the E. coli nfi gene. A. fulgidus endonuclease V was cloned and expressed in E. coli as a C-terminal hexa-histidine fusion protein. The C-terminal fusion protein was purified to apparent homogeneity by a combination of Ni(++) affinity and MonoS cation exchange liquid chromatography. The purified C-terminal fusion protein has a molecular weight of about 25kDa and showed endonuclease activity towards DNA containing deoxyinosine. A. fulgidus endonuclease V has an absolute requirement for Mg(2+) and an optimum reaction temperature at 85 degrees C. However, in contrast to E. coli endonuclease V, which has a wide substrate spectrum, endonuclease V from A. fulgidus recognized only deoxyinosine. These data suggest that the deoxyinosine cleavage activity is a primordial activity of endonuclease V and that multiple enzymatic activities of E. coli endonuclease V were acquired later during evolution.  相似文献   

19.
Vitamin contents of archaebacteria.   总被引:1,自引:1,他引:0       下载免费PDF全文
The levels of six water-soluble vitamins of seven archaebacterial species were determined and compared with the levels found in a eubacterium, Escherichia coli. Biotin, riboflavin, pantothenic acid, nicotinic acid, pyridoxine, and lipoic acid contents of Halobacterium volcanii, Methanobacterium thermoautotrophicum delta H, "Archaeoglobus fulgidus" VC-16, Thermococcus celer, Pyrodictium occultum, Thermoproteus tenax, and Sulfolobus solfataricus were measured by using bioassays. The archaebacteria examined were found to contain these vitamins at levels similar to or significantly below the levels found in in E. coli. Riboflavin was found at levels comparable to those in E. coli. Pyridoxine was as abundant among the archaebacteria of the methanogenhalophile branch as in E. coli. It was only one-half as abundant in the sulfur-metabolizing branch. "A. fulgidus," however, contained only 4% as much pyridoxine as E. coli. Nicotinic and pantothenic acids were approximately 10-fold less abundant (except for a 200-fold-lower nicotinic acid level in "A. fulgidus"). Nicotinic acid may be replaced by an 8-hydroxy-5-deazaflavin coenzyme (factor F420) in some archaebacteria (such as "A. fulgidus"). Compared with the level in E. coli, biotin was equally as abundant in Thermococcus celer and Methanobacterium thermoautotrophicum, about one-fourth less abundant in P. occultum and "A. fulgidus," and 25 to over 100 times less abundant in the others. The level of lipoic acid was up to 20 times lower in H. volcanii, Methanobacterium thermoautotrophicum, and Thermococcus celer. It was over two orders of magnitude lower among the remaining organisms. With the exception of "A. fulgidus," lipoic acid, pantothenic acid, and pyridoxine were more abundant in the members of the methanogen-halophile branch of the archaebacteria than in the sulfur-metabolizing branch.  相似文献   

20.
The accumulation of compatible solutes was studied in the hyperthermophilic bacterium Aquifex pyrophilus as a function of the temperature and the NaCl concentration of the growth medium. Nuclear magnetic resonance analysis of cell extracts revealed the presence of alpha- and beta-glutamate, di-mannosyl-di-myo-inositol phosphate, di-myo-inositol phosphate, and an additional compound here identified as 1-glyceryl-1-myo-inosityl phosphate. All solutes accumulated by A. pyrophilus are negatively charged at physiological pH. The intracellular levels of di-myo-inositol phosphate increased in response to supraoptimal growth temperature, while alpha- and beta-glutamate accumulated in response to osmotic stress, especially at growth temperatures below the optimum. The newly discovered compound, 1-glyceryl-1-myo-inosityl phosphate, appears to play a double role in osmo- and thermoprotection, since its intracellular pool increased primarily in response to a combination of osmotic and heat stresses. This work also uncovered the nature of the unknown compound, previously detected in Archaeoglobus fulgidus (L. O. Martins et al., Appl. Environ. Microbiol. 63:896-902, 1997). The curious structural relationship between diglycerol phosphate (found only in Archaeoglobus species), di-myo-inositol phosphate (a canonical solute of hyperthermophiles), and the newly identified solute is highlighted. This is the first report on the occurrence of 1-glyceryl-1-myo-inosityl phosphate in living systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号