首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fusion protein CTLA-4 . FasL, a paradigmatic "trans signal converter protein", can attach to APC surfaces and in effect convert B7-activating costimulator signals into inhibitory Fas receptor-generated signals. The present study investigates CTLA-4 . FasL's mechanism of action. A combination of p27(kip) and proliferating cell nuclear Ag Western blot and propidium iodide flow cytometric analysis showed no CTLA-4 . FasL effect on cell cycle entry and progression, pointing away from the kind of classical anergy associated with CTLA-4 . Ig. Significantly, CTLA-4 . FasL elicited apoptosis (as detected by annexin-V/propidium iodide costaining) as early as 24 h after T cell activation, suggesting that some coordinate signaling might be capacitating the Fas receptor. Significantly, CTLA-4 . FasL, but not CTLA-4 . Ig, anti-Fas mAb, or the two in combination, abrogated the usual increase in expression of the anti-apototic protein, cFLIP. Furthermore, activation of caspases 8 and 3 were not affected by CTLA-4 . FasL. These findings suggest a model for CTLA-4 . FasL action wherein there is coordinate triggering of a death receptor and suppression of a proapoptotic protein.  相似文献   

2.
CTLA-4. FasL induces alloantigen-specific hyporesponsiveness   总被引:9,自引:0,他引:9  
The APC:T cell interface can be effectively targeted with immunotherapeutic proteins. We previously described a unique trans signal converter protein, CTLA-4. Fas ligand (FasL), that has the inherent capacities to tether the T cell inhibitor FasL (CD95 ligand) to the surfaces of B7 (CD80 and CD86)-positive APC (via CTLA-4:B7 interaction), and in so doing, to simultaneously interfere with B7-to-CD28 T cell activation signals. Given the continuing need for agents capable of inducing allograft tolerance without generalized immunosuppression, we have explored in depth the functional activity of CTLA-4. FasL in human allogeneic MLR. CTLA-4. FasL inhibits 1 degrees MLR and induces specific hyporesponsiveness in 2 degrees MLR, with both effects only partially reversible with exogenous IL-2. Moreover, the presence of exogenous IL-2 during the 1 degrees MLR does not affect the induction of hyporesponsiveness upon restimulation. Furthermore, CTLA-4. FasL enables partial activation of allostimulated T cells, reduces the fraction of actively dividing cells, and increases the percentage of dead cells among dividing T cells. Taken together, these findings suggest that CTLA-4. FasL-mediated inhibition of secondary alloantigenic responses involves both anergy induction and clonal deletion. Thus, CTLA-4. FasL, a paradigmatic trans signal converter protein, manifests unique functional properties and emerges as a potentially useful immunotherapeutic for modulating alloresponsiveness.  相似文献   

3.
4-1BB (CD137) is a costimulatory member of the TNFR family expressed on activated T cells. Its ligand, 4-1BBL, is expressed on activated APC. In the mouse, CD8 T cells are preferentially activated by agonistic anti-murine 4-1BB Abs. However, murine 4-1BBL can stimulate both CD4 and CD8 T cells. To date, there are only limited data on the effects of 4-1BBL on human T cell responses. To further understand the role of 4-1BBL in human T cell responses, we compared human CD4 and CD8 T cell responses to transfected human 4-1BBL plus TCR-mediated stimulation. Both human CD4 and CD8 T cells responded to 4-1BBL. The presence of 4-1BBL on the APC led to increased expansion, cytokine production, and the development of cytolytic effector function by human T cells. In unfractionated T cell cultures, CD4 and CD8 T cells could expand to a similar extent in response to signals through the TCR and 4-1BB, as measured by CFSE labeling and by quantitating T cell numbers in the cultures. In contrast to the results with total T cells, isolated CD8 T cells produced less IL-2 and expanded to a lesser extent than isolated CD4 T cells responding to 4-1BBL. Thus, 4-1BBL is most effective when both CD4 and CD8 T cells are included in the cultures. CD28 and 4-1BB were found to synergize in the induction of IL-2 by human T cells, and CTLA-Ig partially blocked 4-1BBL-dependent IL-2 production. However, a portion of the 4-1BBL-mediated effects were independent of CD28-B7 interaction.  相似文献   

4.
Activation of T cells is dependent upon coordinate engagement of Ag and costimulator receptors on their surfaces. In the case of the Ag receptors (TCRs), activation thresholds have been defined, with the number of TCRs that must be triggered to stimulate cytokine secretion by individual activated T cells differing for the various cytokines. In the present study, we have determined whether comparable activation thresholds exist for the costimulator receptors on T cells. To facilitate this type of quantitative costimulator analysis, we developed a novel two-step protein transfer approach that permits delivery of graded amounts of proteins to APC surfaces. By adding a human B7-1. Fcgamma1 (Fc domain of human IgG1) fusion protein to cells precoated with palmitated protein A, fine titration of the B7-1 extracellular domain was achieved. The B7-1. Fcgamma1 reincorporated into cell membranes by this method retained costimulator function, as measured by an in vitro proliferation assay. The degree of proliferation was dependent on the surface density of B7-1. Fcgamma1. Significantly, the threshold B7-1. Fcgamma1 density required for cytokine production differed between IFN-gamma and IL-2 and mirrored the hierarchy (IFN-gamma < IL-2) described previously for the TCR activation threshold. Hence, this study invokes a novel protein transfer strategy to establish that the levels of surface costimulator on APCs can dictate both the magnitude and the quality of evoked T cell responses. The notion of costimulator receptor activation thresholds emerges.  相似文献   

5.
4-1BB ligand (4-1BBL) is a member of the TNF family expressed on activated APC. 4-1BBL binds to 4-1BB (CD137) on activated CD4 and CD8 T cells and in conjunction with strong signals through the TCR provides a CD28-independent costimulatory signal leading to high level IL-2 production by primary resting T cells. Here we report the immunological characterization of mice lacking 4-1BBL and of mice lacking both 4-1BBL and CD28. 4-1BBL-/- mice mount neutralizing IgM and IgG responses to vesicular stomatitis virus that are indistinguishable from those of wild-type mice. 4-1BBL-/- mice show unimpaired CTL responses to lymphocytic choriomeningitis virus (LCMV) and exhibit normal skin allograft rejection but have a weaker CTL response to influenza virus than wild-type mice. 4-1BBL-/-CD28-/- mice retain the CTL response to LCMV, respond poorly to influenza virus, and exhibit a delay in skin allograft rejection. In agreement with these in vivo results, allogeneic CTL responses of CD28-/- but not CD28+/+ T cells to 4-1BBL-expressing APC are substantially inhibited by soluble 4-1BB receptor as is the in vitro secondary response of CD28+ T cells to influenza virus peptides. TCR-transgenic CD28-/- LCMV glycoprotein-specific T cells are insensitive to the presence of 4-1BBL when a wild-type peptide is used, but the response to a weak agonist peptide is greatly augmented by the presence of 4-1BBL. These results further substantiate the idea that different immune responses vary in their dependence on costimulation and suggest a role for 4-1BBL in augmenting suboptimal CTL responses in vivo.  相似文献   

6.
A number of studies in experimental animal models point to an important role of Fc gamma Rs in autoimmunity and allergy. In this study, we investigate how the production of IgG, an early step in the chain of events leading to inflammation, is regulated by activating and inhibitory Fc gamma Rs. IgG Abs are known to feedback-enhance Ab responses to soluble Ags, and this effect requires activating Fc gamma Rs. To test proliferation of Th cells, mice were adoptively transferred with CD4(+) T cells expressing a transgenic OVA-specific TCR before immunization with IgG2a anti-2,4,6-trinitrophenyl (TNP) plus OVA-TNP or with OVA-TNP alone. IgG2a induced a significant increase in OVA-specific T cell numbers, which preceded the OVA-specific Ab response and was dependent on the Fc gamma chain. The role of the inhibitory Fc gamma RIIB in Ab responses was studied in mice lacking this receptor. Although IgG2a enhanced primary Ab responses, development of germinal centers, and immunological memory in wild-type mice, enhancement was markedly stronger in Fc gamma RIIB(-/-) mice. The presented data are compatible with the hypothesis that the mechanism behind IgG2a-mediated up-regulation of Ab responses involves increased Ag presentation to CD4(+) T cells by Fc gamma R(+) APCs. Our observations also illustrate the intricate immunoregulatory role of IgG Abs. On the one hand, they enhance Ab responses via activating Fc gamma Rs, and on the other hand, they set an upper limit for the same Ab response via Fc gamma RIIB.  相似文献   

7.
CTL are important effectors of antiviral immunity. Designing adjuvants that can induce strong cytotoxic T cell responses in humans would greatly improve the effectiveness of an antiviral vaccination or therapeutic strategy. Recent evidence suggests that, in addition to its well-established role in costimulation of CD4 T cell responses, OX40L (CD134) can directly costimulate mouse CD8 T cells. In this study, we evaluated the role of OX40L in costimulation of human antiviral CD8 T cell responses and compared it with two other important costimulators, B7.1 (CD80) and 4-1BBL (CD137L). Delivery of OX40L to human monocytes using a recombinant replication-defective adenovirus led to greater expansion, up-regulation of perforin, enhanced cytolytic activity, and increased numbers of IFN-gamma- and TNF-alpha-producing antiviral memory CD8 T cells in cultures of total T cells. Synergistic or additive effects were observed when OX40L costimulation was combined with 4-1BBL (CD137L) or B7.1 (CD80) costimulation. In total T cell cultures, at low Ag dose, 4-1BBL provided the most potent costimulus for influenza-specific CD8 T cell expansion, followed by B7.1 (CD80) and then OX40L. For isolated CD8 T cells, 4-1BBL was also the most consistent costimulator, followed by B7.1. In contrast, OX40L showed efficacy in direct activation of memory CD8 T cells in only one of seven donors. Thus, OX40L costimulates human antiviral memory CD8 T cell responses largely through indirect effects and can enhance anti-influenza, anti-EBV, and anti-HIV responses, particularly in combination with 4-1BBL or B7.  相似文献   

8.
Type 1 diabetes mellitus (T1D) in humans is an organ-specific autoimmune disease in which pancreatic islet beta cells are ruptured by autoreactive T cells. NOD mice, the most commonly used animal model of T1D, show early infiltration of leukocytes in the islets (insulitis), resulting in islet destruction and diabetes later. NOD mice produce various islet beta cell-specific autoantibodies, although it remains a subject of debate regarding whether these autoantibodies contribute to the development of T1D. Fc gammaRs are multipotent molecules that play important roles in Ab-mediated regulatory as well as effector functions in autoimmune diseases. To investigate the possible role of Fc gammaRs in NOD mice, we generated several Fc gammaR-less NOD lines, namely FcR common gamma-chain (Fc Rgamma)-deficient (NOD.gamma(-/-)), Fc gammaRIII-deficient (NOD.III(-/-)), Fc gammaRIIB-deficient (NOD.IIB(-/-)), and both Fc Rgamma and Fc gammaRIIB-deficient NOD (NOD.null) mice. In this study, we show significant protection from diabetes in NOD.gamma(-/-), NOD.III(-/-), and NOD.null, but not in NOD.IIB(-/-) mice even with grossly comparable production of autoantibodies among them. Insulitis in NOD.gamma(-/-) mice was also alleviated. Adoptive transfer of bone marrow-derived dendritic cells or NK cells from NOD mice rendered NOD.gamma(-/-) animals more susceptible to diabetes, suggesting a possible scenario in which activating Fc gammaRs on dendritic cells enhance autoantigen presentation leading to the activation of autoreactive T cells, and Fc gammaRIII on NK cells trigger Ab-dependent effector functions and inflammation. These findings highlight the critical roles of activating Fc gammaRs in the development of T1D, and indicate that Fc gammaRs are novel targets for therapies for T1D.  相似文献   

9.
CTLA-4.Fas ligand (CTLA-4.FasL), a paradigmatic 'trans signal converter protein (TSCP)', can attach to APC (via CTLA-4 binding to B7) and direct intercellular inhibitory signals to responding T cells (via FasL binding to Fas receptor), converting an activating APC-to-T cell signal into an inhibitory one. Our previous studies established that CTLA-4.FasL inhibits human primary mixed lymphocyte reactions (MLR) and induces alloantigen-specific hyporesponsiveness ex vivo. The present study extends this to an in vivo context. Using splenocytes from MHC-mismatched C57BL/6 and Balb/c mice, we demonstrated that his(6)CTLA-4.FasL, effectively inhibits murine MLR. Moving in vivo, we demonstrated that subcutaneously administered his(6)CTLA-4.FasL modulates the in vivo response of infused allogeneic splenocytes. his(6)CTLA-4.FasL reduces the number of cells in each cell division, and increases the percentage of dead cells in each division. These findings are consistent with an antigen-induced cell death of the alloreactive cells, and bolsters recombinant TCSP promise as a therapeutic for transplantation diseases.  相似文献   

10.
IL-2-dependent, activation-induced T cell death (AICD) plays an important role in peripheral tolerance. Using CD8+ TCR-transgenic lymphocytes (2C), we investigated the mechanisms by which IL-2 prepares CD8+ T cells for AICD. We found that both Fas and TNFR death pathways mediate the AICD of 2C cells. Neutralizing IL-2, IL-2R alpha, or IL-2R beta inhibited AICD. In contrast, blocking the common cytokine receptor gamma-chain (gamma c) prevented Bcl-2 induction and augmented AICD. IL-2 up-regulated Fas ligand (FasL) and down-regulated gamma c expression on activated 2C cells in vitro and in vivo. Adult IL-2 gene-knockout mice displayed exaggerated gamma c expression on their CD8+, but not on their CD4+, T cells. IL-4, IL-7, and IL-15, which do not promote AICD, did not influence FasL or gamma c expression. These data provide evidence that IL-2 prepares CD8+ T lymphocytes for AICD by at least two mechanisms: 1) by up-regulating a pro-apoptotic molecule, FasL, and 2) by down-regulating a survival molecule, gamma c.  相似文献   

11.
A major new challenge for vaccine development is to target APC such as monocytes and macrophages for efficient Ag processing and presentation. It has been shown that Fc gamma R-mediated uptake of Ag-antibody complexes can enhance Ag presentation by myeloid cells at least 100-fold, and directing Ag to Fc gamma R in mice brings about a substantial increase in the effectiveness of immunization while eliminating the requirement for adjuvant. It has not been determined which of the three subclasses of human Fc gamma R on myeloid cells (Fc gamma RI, Fc gamma RII, or Fc gamma RIII) function to enhance Ag presentation. We have targeted our Ag (TT) to each of the three subclasses of human Fc gamma R on monocytes using Fc gamma R subclass-specific mAb-TT conjugates, and have measured TT presentation by monitoring T cell proliferation in response to TT. In addition, we have examined enhanced Ag presentation mediated by a human IgG1 (HIgG1) anti-TT mAb. All anti-Fc gamma R-TT conjugates enhanced Ag presentation. HIgG1 anti-TT, in monomeric form, enhanced Ag presentation through Fc gamma RI only. Anti-Fc gamma RI-Ag conjugates appear to be optimal for application as vaccines. They are monocyte/macrophage-specific, are very efficiently processed and presented, and enhance Ag presentation despite occupation of Fc gamma RI with HIgG.  相似文献   

12.
4-1BBL(-/-) mice exhibit normal primary CD8 T cell responses to influenza virus, but show decreased CD8 T cell numbers late in the primary response as well as decreased secondary responses. In contrast, CD28(-/-) mice are defective in initial CD8 T cell expansion. Using agonistic anti-4-1BB Ab to replace the CD28 or 4-1BB signal, we examined the timing of the required signals for CD28 vs 4-1BB costimulation. A single dose of agonistic anti-4-1BB Ab added only during priming restores the secondary CD8 T cell response in CD28(-/-) mice. Once the T cell numbers in the primary response reach a minimum threshold, a full secondary response is achieved even in the absence of CD28. In contrast, anti-4-1BB added during priming fails to correct the defective secondary response in 4-1BBL(-/-) mice, whereas addition of anti-4-1BB during challenge fully restores this response. Thus, there is a switch in costimulatory requirement from CD28 to 4-1BB during primary vs recall responses. Adoptive transfer studies show that T cells primed in 4-1BBL(-/-) or wild-type mice are equally capable of re-expansion when rechallenged in wild-type mice. These studies rule out a model in which signals delivered through 4-1BB during priming program the T cells to give a full recall response and suggest that 4-1BB-4-1BBL interactions take place at later stages in the immune response. The results indicate that anti-4-1BB or 4-1BBL therapy will be most effective during the boost phase of a prime-boost vaccination strategy.  相似文献   

13.
The expression of Fc gamma R on subsets of mouse spleen cells was examined by dual parameter flow microfluorometry. B cells were detected by labeling them with antibodies against sIgM, sIgD, sIgG, or I-A; essentially all B cells expressed Fc gamma R. The number of Fc gamma R per cell on the sIgD+, sIgM+, and I-A+ cells averaged 2 X 10(4) receptors, and no correlation between the levels of expression of Fc gamma R and the B cell markers was evident. The sIgG+ B cells, however, expressed more Fc gamma R (8 X 10(4) receptors/cell) than sIgM+ and sIgD+ B cells. Fc gamma R on splenic macrophages were examined by double labeling spleen cells for Fc gamma R and Mac-1. The Mac-1+ cells (2 to 16% of the spleen cells) were 100% Fc gamma R+ and expressed threefold to fivefold higher numbers of Fc gamma R per cell than the sIgM+ or sIgD+ B cells. The Fc gamma R on T cells were studied on cells double labeled for Fc gamma R and Thy-1, Lyt-1, or Lyt-2. An average of 20% of the T cells expressed Fc gamma R and at least two subsets of Fc gamma R+ T cells were evident: Lyt-2- cells, most of which expressed intermediate (2 X 10(4) Fc gamma R/cell) levels of Fc gamma R, and Lyt-2+ cells, which expressed mainly high (8 X 10(4) Fc gamma R/cell) amounts of Fc gamma R. The levels of expression of Fc gamma R and sIgM increased dramatically in response to infection and were elevated in mice with genetic defects. We conclude that the level of Fc gamma R expression is a characteristic property of subsets of spleen cells from normal and infected mice.  相似文献   

14.
Chen A  Xu H  Choi Y  Wang B  Zheng G 《Cellular immunology》2004,231(1-2):40-48
Dendritic cells (DCs) are the most potent APCs known to date. Despite their potency, DCs are short-lived. During the course of an immune response, DCs interact with cognate T cells, which upon activation express both DC survival and pro-apoptotic factors. This raises the question how DC longevity is regulated by these signals. In this study, we have assessed the roles of FasL (CD95L) and tumor necrosis factor-related activation-induced cytokine (TRANCE) in regulating the survival of murine bone marrow-derived DCs (BMDCs). We have shown for the first time that TRANCE protects DCs from FasL-mediated apoptosis, and that the quantitative balance between TRANCE and FasL can modulate BMDC survival in vitro. In addition, by quantifying adoptively transferred BMDCs in draining lymph nodes (LNs), we have shown that treating DCs with FasL prior to the transfer decreases the quantity of donor DCs capable of migrating to the LN, presumably due to FasL-mediated apoptosis of donor DCs in vivo. Furthermore, we have shown that TRANCE can counteract FasL and reverse such decrease. Taken together, these results suggest that the interplay between FasL and TRANCE play a role in regulating the survival of DCs.  相似文献   

15.
Recently, it has been shown that Fas ligand (FasL) interacts with the extracellular matrix (ECM) protein fibronectin (FN), and that the bound FasL retains its cytotoxic efficacy. Herein, we examined the ramifications of FasL-ECM protein interactions throughout a specific time period, in the absence or presence of additional activating molecules, assuming that these complexed interactions occur during inflammation. We found that exposure of purified human T cells to FN-associated recombinant FasL for as brief as 5-10 min at 0.1-100 ng/ml induced their adhesion in beta(1) integrin- and FasR-dependent manners while activating the intracellular protein kinase, Pyk-2. The FN-associated FasL stops the CXCL12 (stromal cell-derived factor 1alpha)-induced chemotaxis of T cells by inhibiting the chemokine-induced extracellular signal-regulated kinase signaling and cytoskeletal rearrangement. This short term exposure of T cells to the FN-bound FasL (1 ng/ml), which was followed by T cell activation via the CD3 complex, resulted in 1) increased secretion of IFN-gamma (measured after 24 h), and 2) enhanced T cell apoptosis (measured after 72 h). Thus, in the context of inflamed ECM and depending on the time after FasL activation, its concentration, and the nature of other contextual mediators, FasL initially retains effector T cells at sites of inflammation and, later, induces T cell apoptosis and return to homeostasis.  相似文献   

16.
Although resting B cells as APC are tolerogenic for naive T cells in vivo, we show here that they can provide all the costimulatory signals necessary for naive T cell proliferation in vivo and in vitro. In the absence of an activating signal through the B cell Ag receptor, T cell proliferation after Ag recognition on resting B cells depends on CD40 expression on the B cells, implying that naive T cells use the membrane-bound cytokine, CD40 ligand (CD154), to induce the costimulatory signals that they need. Induction of B7-1 (CD80) and increased or sustained expression of CD44H, ICAM-1 (CD54), and B7-2 (CD86) are dependent on the interaction of CD40 ligand with CD40. Transient expression (12 h) of B7-2 is T cell- and peptide Ag-dependent, but CD40-independent. Only sustained (>/=24 h) expression of B7-2 and perhaps increased expression of ICAM-1 could be shown to be functionally important in this system. T cells cultured with CD40-deficient B cells and peptide remain about as responsive as fresh naive cells upon secondary culture with whole splenic APC. Therefore, B cells, and perhaps other APC, may be tolerogenic not because they fail to provide sufficient costimulation for T cell proliferation, but because they are deficient in some later functions necessary for a productive T cell response.  相似文献   

17.
Ags administered orally at a high dose are absorbed in immunogenic forms and perfuse the liver, which raises a question regarding the relevance of hepatic lymphocyte activation to the systemic hyporesponsiveness against the ingested Ag. Oral administration of 100 mg of OVA to the mice led to massive cell death of OVA-specific (KJ1-26+)CD4+ T cells by Fas-Fas ligand (FasL)-mediated apoptosis in the liver, which was associated with the emergence of hepatic KJ1-26+CD4+ T cells expressing FasL. Hepatic CD4+ T cells in OVA-fed mice secreted large amounts of IL-4, IL-10, and TGF-beta(1) upon restimulation in vitro and inhibited T cell proliferation. Adoptive transfer of these hepatic CD4+ T cells to naive mice and subsequent antigenic challenge led to suppression of T cell proliferation as well as IgG Ab responses to OVA; this effect was mostly abrogated by a blocking Ab to FasL. i.p. administration of an Ag at a high dose also generated hepatic CD4+FasL+ T cells with similar cytokine profile as T cells activated by oral administration of Ags at a high dose. Finally, we did not see an increase in FasL+ cells in the hepatic CD4+Vbeta8+ T cell subset of MRL/lpr/lpr mice given staphylococcal enterotoxin B, indicating the requirement for Fas-mediated signals. These hepatic CD4+FasL+ regulatory cells may explain the tolerogenic property of the liver and play roles in systemic hyporesponsiveness induced by an Ag administered at a high dose.  相似文献   

18.
19.
Constitutive expression of functional 4-1BB (CD137) ligand on carcinoma cells   总被引:23,自引:0,他引:23  
Members of the TNF superfamily, including Fas, Fas ligand, and CD40, have been shown to be expressed on tumor cells. In the studies described in this work, we report that another family member, the ligand for 4-1BB (CD137), is expressed on various human carcinoma cell lines, on cells of solid tumors derived from these cell lines, and cells obtained from human tumors. Expression of 4-1BB ligand (4-1BBL) mRNA was detected by both RT-PCR and Northern blot analysis, and expression of 4-1BBL protein was detected by Western blot analysis of whole cell lysates and by FACS analysis of tumor cells and cell lines. Incubation of tumor cells with a 4-1BB-Ig fusion protein led to the production of IL-8 by the cells, demonstrating that the 4-1BBL is functionally active and signals back into the tumor cells. Furthermore, 4-1BBL expressed on the carcinoma cells functioned as a costimulatory molecule for the production of cytokines (most notably IFN-gamma) in cocultures of T cells and tumor cells. These findings suggest that 4-1BBL expressed on carcinoma cells may significantly influence the outcome of a T cell-tumor cell interaction.  相似文献   

20.
An increasing number of C-type lectin receptors are being discovered on dendritic cells, but their signaling abilities and underlying mechanisms require further definition. Among these, dendritic cell immunoreceptor (DCIR) induces negative signals through an inhibitory immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail. Here we identify a novel C-type lectin receptor, dendritic cell immunoactivating receptor (DCAR), whose extracellular lectin domain is highly homologous to that of DCIR. DCAR is expressed similarly in tissues to DCIR, but its short cytoplasmic portion lacks signaling motifs like ITIM. However, a positively charged arginine residue is present in the transmembrane region of the DCAR, which may explain its association with Fc receptor gamma chain and its stable expression on the cell surface. Furthermore, cross-linking of DCAR in the presence of gamma chain activates calcium mobilization and tyrosine phosphorylation of cellular proteins. These signals are mediated by the immunoreceptor tyrosine-based activating motif (ITAM) of the gamma chain. Thus, DCAR is closely related to DCIR, but it introduces activating signals into antigen-presenting cells through its physical and functional association with ITAM-bearing gamma chain. The identification of this activating immunoreceptor provides an example of signaling via a dendritic cell-expressed C-type lectin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号