首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ochratoxin A (OTA), a mycotoxin, is a potent nephrotoxin in humans and animals. Selenium (Se) is an essential micronutrient for humans and animals, and plays a key role in antioxidant defense. To date, little is known about the effect of Se on OTA-induced nephrotoxicity. In this study, the protective effects of selenomethionine against OTA-induced nephrotoxicity were investigated using the porcine kidney 15 (PK15) cells as a model. The results showed that OTA induced nephrotoxicity in a dose-dependent manner. Se at 0.5, 1, 2 and 4 μM had significant protective effects against OTA-induced nephrotoxicity. Furthermore, selenomethionine enhanced the activity and mRNA and protein expression of glutathione peroxidase 1 (GPx1), mRNA expression of GPx4, and mRNA expression of thioredoxin reductase 1 in the presence and absence of OTA. Among them, promoting effect of selenomethionine on GPx1 was maximal. Knock-down of GPx1 by using a GPx1-specific siRNA eliminated the protective effects of selenomethionine against OTA-induced nephrotoxicity. The results suggest that selenomethionine alleviates OTA-induced nephrotoxicity by improving selenoenzyme expression in PK15 cells. Therefore, selenomethionine supplementation may be an attractive strategy for protecting humans and animals from the risk of kidney damage induced by OTA.  相似文献   

2.
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.  相似文献   

3.
BackgroundChronic nephropathies result from different pathogenic agents, including nutritional factors triggering vicious pathophysiological cycles. Ochratoxin A (OTA) is a globally occurring nephrotoxic mycotoxin detectable in a variety of foodstuff and suspected to cause tubulointerstitial damage. The underlying mechanisms are not sufficiently understood, compromising risk assessment. Because crosstalk of proximal tubule cells with fibroblasts is crucial for tubulointerstitial damage, we investigated the effects of OTA in co-culture of these two cell types.MethodsRat renal proximal tubule cells (NRK-52E) and renal fibroblasts (NRK-49F) were exposed to nanomolar OTA concentrations under mono- and/or co-culture conditions for up to 48 h. We determined the impact on inflammation-, EMT- and fibrosis-associated proteins as well as microRNAs by western blot or qPCR, respectively. Alterations in cell morphology were quantitatively assessed. The roles of miRs, COX-2 and ERK1/2 in OTA-induced effects were investigated by specific inhibition.FindingsOnly under co-culture condition, OTA caused an increase of vimentin, fibronectin and miR-21 and a decrease of collagen III, E-cadherin, COX-2 and WISP1 mRNA abundance in NRK-52E cells. In NRK-49F cells, OTA induced an increase of N-cadherin, COX-2, WISP1 in co-culture only. The OTA-induced increase of fibronectin in NRK-52E cells was prevented by simultaneous inhibition of miR-21 and -200a, COX-2 or ERK1/2. The OTA-induced increase of COX-2 in NRK-49F cells was prevented by inhibition of miR-21 and -200a or ERK1/2.InterpretationOur results show that the complete nephropathic potential of nanomolar OTA, leading to EMT, is unveiled when cellular crosstalk is possible. In monoculture, the nephropathic potential is underestimated.Research in contextChronic nephropathies are a severe health burden and the result of different pathogenic mechanisms, including nutritional factors that trigger vicious pathophysiological cycles. Ochratoxin A (OTA) is a ubiquitous, globally occurring nephrotoxic mycotoxin detectable in a variety of foodstuff and suspected to cause tubulointerstitial damage. Because underlying pathomechanisms are unclear, risk assessment is problematic. Crosstalk of proximal tubule cells (the main target of OTA) with fibroblasts is crucial for the development of tubulointerstitial damage. We show that during co-culture of proximal tubule cells and fibroblasts, OTA-induced effects (e.g. epithelial-mesenchymal transition (EMT)) change significantly as compared to monoculture. Our results show that the complete nephropathic potential of OTA is unveiled when cellular crosstalk is possible. In monoculture, the nephropathic potential of OTA is underestimated.  相似文献   

4.
5.
6.
In the study, the effects of relatively high single-dose of Ochratoxin A (OTA) and the antioxidant effects of Melatonin (Mel) and Coenzyme Q10 (CoQ10) on OTA-induced oxidative damages in rats were investigated. A total of 28 male Sprague-Dawley rats were divided into four groups of 7 rats each: Control, OTA, Mel+OTA and CoQ10+OTA groups. Malondialdehyde (MDA) levels in the plasma and glutathione (GSH) levels in whole blood were measured; kidneys (for histological inspection and for apoptosis detection by TUNEL method) and bone marrow samples (for chromosome aberration and mitotic index) were taken. The rats in the OTA group showed limited degeneration of tubular cells. In some tubules karyomegaly, desquamated cells and vacuolization were observed by light microscopy. Mel and CoQ10 treatment significantly reduced the severity of the lesions. MDA levels of the OTA group were significantly higher than the control, OTA+Mel and OTA+CoQ10 groups, while GSH levels were significantly lower than the control, OTA+Mel and OTA+CoQ10 groups. Higher incidences of apoptotic bodies were observed in the kidneys of the OTA group although OTA administration did not significantly change the incidence of apoptotic bodies when compared to the control and antioxidant administrated groups. Although the percentage of the mitotic index was lowest in the OTA group, no statistical difference was found among the groups. Additionally, OTA had no numerical and structural significant effects on chromosomes. It was observed that single-dose OTA administration caused oxidative damages in rat kidney and Mel or CoQ10 treatment appeared to ameliorate the OTA-induced tissue injuries.  相似文献   

7.
Oxidative damage and stress response from ochratoxin a exposure in rats   总被引:5,自引:0,他引:5  
Ochratoxin A (OTA) is a mycotoxin found in some cereal and grain products.It is a potent renal carcinogen in male rats, although its mode of carcinogenic action is not known. Oxidative stress may play a role in OTA-induced toxicity and carcinogenicity.In this study, we measured several chemical and biological markers that are associated with oxidative stress response to determine if this process is involved in OTA-mediated toxicity in rats. Treatment of male rats with OTA (up to 2 mg/ 24 h exposure) did not increase the formation of biomarkers of oxidative damage such as the lipid peroxidation marker malondialdehyde in rat plasma, kidney, and liver, or the DNA damage marker 8-oxo-7,8-dihydro-2' deoxyguanosine in kidney DNA. However, OTA treatment (1 mg/kg) did result in a 22% decrease in alpha-tocopherol plasma levels and a 5-fold increase in the expression of the oxidative stress responsive protein haem oxygenase-1, specifically in the kidney. The selective alteration of these latter two markers indicates that OTA does evoke oxidative stress, which may contribute at least in part to OTA renal toxicity and carcinogenicity in rats during long-term exposure.  相似文献   

8.
Matrix metalloproteinase 9 (MMP-9) has been purified as an inactive zymogen of M(r) 92,000 (proMMP-9) from the culture medium of HT 1080 human fibrosarcoma cells. The NH2-terminal sequence of proMMP-9 is Ala-Pro-Arg-Gln-Arg-Gln-Ser-Thr-Leu-Val-Leu-Phe-Pro, which is identical to that of the 92-kDa type IV collagenase/gelatinase. The zymogen can be activated by 4-aminophenylmercuric acetate, yielding an intermediate form of M(r) 83,000 and an active species of M(r) 67,000, the second of which has a new NH2 terminus of Met-Arg-Thr-Pro-Arg-(Cys)-Gly-Val-Pro-Asp-Leu-Gly-Arg-Phe-Gln-Thr- Phe-Glu. Immunoblot analyses demonstrate that this activation process is achieved by sequential processing of both NH2- and COOH-terminal peptides. TIMP-1 complexed with proMMP-9 inhibits the conversion of the intermediate form to the active species of M(r) 67,000. The proenzyme is fully activated by cathepsin G, trypsin, alpha-chymotrypsin, and MMP-3 (stromelysin 1) but not by plasmin, leukocyte elastase, plasma kallikrein, thrombin, or MMP-1 (tissue collagenase). During the activation by MMP-3, proMMP-9 is converted to an active species of M(r) 64,000 that lacks both NH2- and COOH-terminal peptides. In addition, HOCl partially activates the zymogen by reacting with an intermediate species of M(r) 83,000. The enzyme degrades type I gelatin rapidly and also cleaves native collagens including alpha 2 chain of type I collagen, collagen types III, IV, and V at undenaturing temperatures. These results indicate that MMP-9 has different activation mechanisms and substrate specificity from those of MMP-2 (72-kDa gelatinase/type IV collagenase).  相似文献   

9.
Since mast cells play pivotal roles in allergic inflammations, we investigated how IgE-mediated stimulation modulated mast cell matrix metalloproteinase (MMP)-9 production, and its enzymatic activation. In this study, we clearly demonstrated that proMMP-9 released from murine bone marrow-derived cultured mast cells (BMCMC) was activated to its valid form after crosslinking of surface immunoglobulin (Ig)E. Serine protease inhibitors sensitive to chymases inhibited the phenomenon, indicating that certain chymases may be responsible for activation of proMMP-9. Although binding of IgE to its specific receptors did not alter MMP-9 production, the IgE crosslinkage increased both expression of mRNA, and production of MMP-9 in mast cells. Glucocorticoid declined extra cellular processing of proMMP-9 without affecting mRNA expression. These findings give rise to the possibility that production and activation of mast cell MMP-9 may be increased in the affected sites, thereby resulting in an exacerbation of tissue degradation in inflammatory conditions.  相似文献   

10.
MMP-9 (matrix metalloproteinase 9) plays a critical role in tumour progression. Although the biochemical properties of the secreted form of proMMP-9 are well characterized, little is known about the function and activity of cell surface-associated proMMP-9. We purified a novel 82 kDa species of proMMP-9 from the plasma membrane of THP-1 leukaemic cells, which has substantial differences from the secreted 94 kDa proMMP-9. The 82 kDa form was not detected in the medium even upon stimulation with a phorbol ester. It is truncated by nine amino acid residues at its N-terminus, lacks O-linked oligosaccharides present in the 94 kDa proMMP-9, but retains N-linked carbohydrates. Incubation of 94 kDa proMMP-9 with MMP-3 generated the well-known 82 kDa active form, but the 82 kDa proMMP-9 was converted into an active species of 35 kDa, which was also produced by autocatalytic processing in the absence of activating enzymes. The activated 35 kDa MMP-9 efficiently degraded gelatins, native collagen type IV and fibronectin. The enzyme was less sensitive to TIMP-1 (tissue inhibitor of metalloproteinase 1) inhibition with IC50 values of 82 nM compared with 1 nM for the 82 kDa active MMP-9. The synthetic MMP inhibitor GM6001 blocked the activity of both enzymes, with similar IC50 values below 1 nM. The 82 kDa proMMP-9 is also produced in HL-60 and NB4 leukaemic cell lines as well as ex vivo leukaemic blast cells. It is, however, absent from neutrophils and mononuclear cells isolated from peripheral blood of healthy individuals. Thus, the 82 kDa proMMP-9 expressed on the surface of malignant cells may escape inhibition by natural TIMP-1, thereby facilitating cellular invasion in vivo.  相似文献   

11.
Despite good evidence for a genotoxic potential of ochratoxin A (OTA), the mechanism of OTA-induced genotoxicity (direct or indirect?) is still unclear. This calls for a further characterization of OTA-related DNA damage, and investigations of factors that may modulate dose-effect relationships in cells. Since bladder epithelium is a target tissue for the toxicity of OTA, its effects were studied in cultures of human bladder carcinoma (H5637) cells. Cytotoxicity of OTA, assessed by Neutral red (NR) uptake or Alamar-Blue assay, is concentration- and time-dependent: Upon 24 h treatment of 5637 cells, NR uptake is reduced by 50% with OTA concentrations of ≥0.2 microM, but not with 3 h treatment of the cells. Since cytotoxicity of OTA was not affected by addition of xenobiotic metabolizing enzymes (S-9 mix), it appears to be unrelated to biotransformation of the mycotoxin. Also, addition of S-9 mix did not significantly affect the genotoxicity of OTA as studied by alkaline single cell gel electrophoresis (Comet assay). DNA damage was detectable after 3 h treatment of cells at OTA concentrations between 0.1 and 1 microM, and increased further at higher concentrations. The magnitude of OTA-induced DNA damage did not increase with longer treatment times (18, 24 h), probably due to repair processes in the cells. Repair of OTA-induced lesions is quite efficient in kidney (Arch Toxicol 2002, 75, 734–741) and in porcine bladder cells (Föllmann and Lebrun, 2005, Mycotoxin Research, this volume). Interestingly, the genotoxicity of OTA is modulated by the pH of the culture medium, with higher damage at pH 5 compared to pH 7.5. In line with this, uptake studies with tritiated OTA show a higher cellular accumulation of the mycotoxin at pH 5 than in buffer of pH 7.5. Thus, bladder cells exposed to OTA in slightly acidic urine (which facilitates reabsorption) may be at higher risk.  相似文献   

12.
Human rheumatoid synovial cells in culture secrete at least three related metalloproteinases that digest extracellular matrix macromolecules. One of them, termed matrix metalloproteinase 2 (MMP-2), has been purified as an inactive zymogen (proMMP-2). The final product is homogeneous on SDS/PAGE with Mr = 72,000 under reducing conditions. The NH2-terminal sequence of proMMP-2 is Ala-Pro-Ser-Pro-Ile-Ile-Lys-Phe-Pro-Gly-Asp-Val-Ala-Pro-Lys-Thr, which is identical to that of the so-called '72-kDa type IV collagenase/gelatinase'. The zymogen can be rapidly activated by 4-aminophenylmercuric acetate to an active form of MMP-2 with Mr = 67,000, and the new NH2-terminal generated is Tyr-Asn-Phe-Phe-Pro-Arg-Lys-Pro-Lys-Trp-Asp-Lys-Asn-Gln-Ile. However, following 4-aminophenylmercuric acetate activation, MMP-2 is gradually inactivated by autolysis. Nine endopeptidases (trypsin, chymotrypsin, plasmin, plasma kallikrein, thrombin, neutrophil elastase, cathepsin G, matrix metalloproteinase 3, and thermolysin) were tested for their abilities to activate proMMP-2, but none had this ability. This contrasts with the proteolytic activation of proMMP-1 (procollagenase) and proMMP-3 (prostromelysin). The optimal activity of MMP-2 against azocoll is around pH 8.5, but about 50% of activity is retained at pH 6.5. Enzymic activity is inhibited by EDTA, 1,10-phenanthroline or tissue inhibitor of metalloproteinases, but not by inhibitors of serine, cysteine or aspartic proteinases. MMP-2 digests gelatin, fibronectin, laminin, and collagen type V, and to a lesser extent type IV collagen, cartilage proteoglycan and elastin. Comparative studies on digestion of collagen types IV and V by MMP-2 and MMP-3 (stromelysin) indicate that MMP-3 degrades type IV collagen more readily than MMP-2, while MMP-2 digests type V collagen effectively. Biosynthetic studies of MMPs using cultured human rheumatoid synovial fibroblasts indicated that the production of both proMMP-1 and proMMP-3 is negligible but it is greatly enhanced by the treatment with rabbit-macrophage-conditioned medium, whereas the synthesis of proMMP-2 is constitutively expressed by these cells and is not significantly affected by the treatment. This suggests that the physiological and/or pathological role of MMP-2 and its site of action may be different from those of MMP-1 and MMP-3.  相似文献   

13.
Diosgenin, a traditional Yam extraction, has been used in hormone replacement for menopausal women. We aimed to investigate the influences of diosgenin administration upon the MMP-2 and -9 activity and expression and reproductive hormones of ovariectomized (OVX) rats, a model of menopausal status. Seven-week old female Wistar rats with bilateral OVX or sham operation (controls) were divided and administered different dosages of diosgenin (0, 10, 50, or 100 mg/kg/day) for 8 weeks. Serum was then sampled for progesterone (P4) and estradiol (E2) assay and uterine horns harvested. Myometrial MMP-2 and -9 activity and expression were surveyed and myometrial collagen expression was also assayed. The results show higher body weight in OVX rats across the 8 weeks post surgery and no significant differences were noted among OVX or Sham rats with diosgenin supplements. There were lower P4 and E2 concentrations in OVX rats compared to Sham rats, and higher P4 concentration of Sham rats post diosgenin supplement. MMP-2 and -9 mRNA expression and activity was lower in OVX rats, although higher MMP-2 and lower MMP-9 activity/mRNA expression was observed in OVX rats post diosgenin supplementation. Collagen mRNA expression was higher in OVX rats compared to Sham controls, and diosgenin administration decreased collagen mRNA expression in OVX rats. In conclusion, diosgenin is associated with gelatinase expression and collagen metabolism in OVX rats. Diosgenin administration can partially reverse the effects of OVX upon MMP functions and hormone status. Adequate diosgenin supplement might modulate myometrial gelatinase expression and collagen metabolism in menopausal subjects.  相似文献   

14.
We investigated the role of TGF-β1 and TNF-α in mediating the effect of IL-1β in activating proMMP-9 and proMMP-2, and the involvement of an aprotinin sensitive protease in this scenario in bovine pulmonary artery smooth muscle cells. IL-1β induces TGF-β1 mediated stimulation of 92 kDa proMMP-9 and 72 kDa proMMP-2 mRNA and protein expression; whereas, the elevated level of TNF-α promotes activation of proMMP-9 and proMMP-2. Interestingly, TNF-α induced activation of proMMP-9 appeared to be mediated via a 43 kDa aprotinin sensitive protease. TNF-α inhibited aprotinin and TIMP-1 mRNA and protein expression, which apparently facilitated the proteolytic conversion of proMMP-9 to MMP-9 with the involvement of the aprotinin sensitive protease. The aprotinin sensitive protease did not activate proMMP-2 under IL-1β stimulation, albeit a marked inhibition of TIMP-2 mRNA and protein expression were elicited by TNF-α. Thus, IL-1β induced stimulation of the two progelatinases occurs via different mechanisms.  相似文献   

15.
The main target organ of the mycotoxin ochratoxin A (OTA) in mammals is the kidney but OTA has also been shown to be hepatotoxic in rats and to induce tumors in mouse liver. Even at very low concentrations, OTA causes perturbations of cellular signaling pathways as well as enhanced apoptosis. OTA has been extensively studied in kidney cell systems. Since this substance also affects liver health, we focused our work on apoptosis-related events induced by OTA in primary rat hepatocytes. We performed pathway-specific polymerase chain reaction arrays to assess the expression of genes involved in apoptosis. Treatment with 1 μM OTA for 24 h caused marked changes in apoptosis-related gene expression. Genes as apaf1, bad, caspase 7, polb (DNA polymerase beta, performs base excision repair), and p53, which are marker genes for DNA damage, were upregulated. FAS and faslg were also markedly induced by treatment with OTA. Treatment of hepatocytes with OTA led to a concentration-dependent inhibition of protein biosynthesis. Apoptosis-inducing factor was released from mitochondria following OTA treatment; the mycotoxin induced the activity of caspases 8, 9, and 3/7 and caused chromatin condensation and fragmentation. Caspase inhibition led to a significant but not complete reduction of OTA-induced apoptosis. Our data suggest that not only OTA leads to p53-dependent apoptosis in rat hepatocytes but it also hints to other mechanisms, independent of caspase activation or protein biosynthesis, being involved.  相似文献   

16.
Ochratoxin A (OTA), one of the major food-borne mycotoxins, induces apoptosis in various types of cells. Induction of apoptosis is suggested to be one of the major cellular mechanisms behind OTA-induced diverse toxic effects. However, the molecular mechanisms involved, especially the role of p53 in OTA-induced apoptosis have not been clearly elucidated. In the present study, we find that p53 activation exerts pro-survival function to inhibit apoptosis induction in MARC-145, Vero monkey kidney cells and HEK293 human kidney cells in response to ochratoxin A treatment. We further demonstrate that the pro-survival activity of p53 is attributed to its ability to suppress JNK activation that mediates apoptotic signaling through down-regulation of Bcl-xL. To our knowledge, this is first report of pro-survival role of p53 in OTA-induced apoptosis in kidney epithelial cells. Our findings provide a novel insight into the mechanisms of OTA-induced apoptosis in kidney epithelial cells.  相似文献   

17.
Although ischemia is the leading cause of acute renal failure in human, there is little information on the remodeling the kidney endothelium matrix during ischemic injury. In this study, we investigated the activity and expression of MMP-2 and MMP-9, in an isolated endothelial fraction following an acute in vivo reversible ischemia induced in rats by vascular clamping. Ischemia increased serum creatinine levels 1.4-fold, hallmark of acute renal failure. Isolation of the endothelial cell fraction was performed by affinity chromatography using an anti-PECAM-1 antibody. The isolated fraction was assessed by Western blotting analysis of endothelial cell markers. The positively selected fractions were enriched in the endothelial markers eNOS and PECAM-1 by 128-fold and 44-fold, respectively. Gelatin zymography showed that ischemia strongly stimulated proteolytic activity of proMMP-2 (1.8-fold), proMMP-9 (3-fold) and MMP-9 (4-fold) in the endothelial fractions. Western blot analysis indicated that TIMP-2 protein level increased by 3.2-fold in the endothelial fractions during ischemia. Surprisingly, TIMP-1 was absent from the endothelial preparations but was easily detected in the non-endothelial cells. Levels of the endocytic receptor LRP were increased by 2-fold during ischemia in the endothelial fractions. Occludin, a known in vivo MMP-9 substrate, was partly degraded in the endothelial fractions during ischemia, suggesting that the MMP-9 which was upregulated during ischemia was functional. These data suggest that ischemia in kidney could lead to the degradation of the vascular basement membrane and to increased permeability. This suggests new therapeutic approaches for ischemic pathologies by targeting MMP-9 and its regulators.  相似文献   

18.
Ochratoxin A (OTA) is one of the most harmful mycotoxins, which can cause multiple toxicological effects, especially nephrotoxicity in animals and humans. Taurine is an essential amino acid with various biological functions such as anti-inflammatory and anti-oxidation. However, the protective effect of taurine on OTA-induced nephrotoxicity and pyroptosis had not been reported. Our results showed that OTA exposure induced cytotoxicity and oxidative stress in PK-15 cells, including reactive oxygen species (ROS) accumulation, increased mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2), and decreased mRNA levels of catalase (CAT), glutathione peroxidase 1 (GPx1), and glutathione peroxidase 4 (GPx4). In addition, OTA treatment induced pyroptosis by increasing the expressions of pyroptosis-related proteins NLRP3, GSDMD, Caspase-1 P20, ASC, Pro-caspase-1, and IL-1β. Meanwhile, taurine could alleviate OTA-induced pyroptosis and cytotoxicity, as well as reduce ROS level, COX-2, and iNOS mRNA levels, and increase the mRNA levels of the antioxidant enzyme in PK-15 cells. Taken together, taurine alleviated OTA-induced pyroptosis in PK-15 cells by inhibiting ROS generation and altering the activity of antioxidant enzymes, thereby attenuating its nephrotoxicity.  相似文献   

19.
DDC (diethyldithiocarbamate) could block collagen synthesis in HSC (hepatic stellate cells) through the inhibition of ROS (reactive oxygen species) derived from hepatocyte CYP2E1 (cytochrome P450 2E1). However, the effect of DDC on MMP-1 (matrix metalloproteinase-1), which is the main collagen degrading matrix metalloproteinase, has not been reported. In co-culture experiments, we found that DDC significantly enhanced MMP-1 expression in human HSC (LX-2) that were cultured with hepatocyte C3A cells either expressing or not expressing CYP2E1. The levels of both proenzyme and active MMP-1 enzyme were up-regulated in LX-2 cells, accompanied by elevated enzyme activity of MMP-1 and decreased collagen I, in both LX-2 cells and the culture medium. H2O2 treatment abrogated DDC-induced MMP-1 up-regulation and collagen I decrease, while catalase treatment slightly up-regulated MMP-1 expression. These data suggested that the decrease in ROS by DDC was partially responsible for the MMP-1 up-regulation. ERK1/2 (extracellular signal-regulated kinase 1/2), Akt (protein kinase B) and p38 were significantly activated by DDC. The ERK1/2 inhibitor (U0126) and Akt inhibitor (T3830) abrogated the DDC-induced MMP-1 up-regulation. In addition, a p38 inhibitor (SB203580) improved MMP-1 up-regulation through the stimulation of ERK1/2. Our data indicate that DDC significantly up-regulates the expression of MMP-1 in LX-2 cells which results in greater MMP-1 enzyme activity and decreased collagen I. The enhancement of MMP-1 expression by DDC was associated with H2O2 inhibition and coordinated regulation by the ERK1/2 and Akt pathways. These data provide some new insights into treatment strategies for hepatic fibrosis.  相似文献   

20.
Tubular cell epithelial-mesenchymal transition (EMT) is a fundamental contributor to renal fibrosis. The aim of this study was to investigate the activity of different matrix metalloproteinases by immunohistochemistry and gel-zymography in a model of chronic canine kidney disease. Immunohistochemistry for antibodies against MMP-9, MMP-2, MMP-13, MMP-14 and TIMP-2 was performed on 28 renal biopsy specimens. Selected cases were chosen for gelatin zymography. In moderate and severe tubulo-interstitial damage, increased expression of MMP-2 was noted. A peculiar staining pattern for MMP-2 in variable-sized vesicles, corresponding to the area of basement membrane splitting, was observed. The immunoexpression of MMP-9 and TIMP-2 was reduced in the same cases, compared to control dogs. The splitting of the membrane suggests an active role of this gelatinase in the disruption of type-IV collagen, the main basement membrane component, confirmed by MMP2 gelatinolytic activity by gel-zymography. These data could provide the basis for clinical trials examining the potential benefits of selective MMP-2 inhibitors in dogs with chronic kidney disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号