首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sugasawa K  Okuda Y  Saijo M  Nishi R  Matsuda N  Chu G  Mori T  Iwai S  Tanaka K  Tanaka K  Hanaoka F 《Cell》2005,121(3):387-400
The xeroderma pigmentosum group C (XPC) protein complex plays a key role in recognizing DNA damage throughout the genome for mammalian nucleotide excision repair (NER). Ultraviolet light (UV)-damaged DNA binding protein (UV-DDB) is another complex that appears to be involved in the recognition of NER-inducing damage, although the precise role it plays and its relationship to XPC remain to be elucidated. Here we show that XPC undergoes reversible ubiquitylation upon UV irradiation of cells and that this depends on the presence of functional UV-DDB activity. XPC and UV-DDB were demonstrated to interact physically, and both are polyubiquitylated by the recombinant UV-DDB-ubiquitin ligase complex. The polyubiquitylation altered the DNA binding properties of XPC and UV-DDB and appeared to be required for cell-free NER of UV-induced (6-4) photoproducts specifically when UV-DDB was bound to the lesion. Our results strongly suggest that ubiquitylation plays a critical role in the transfer of the UV-induced lesion from UV-DDB to XPC.  相似文献   

4.
The DNA nucleotide excision repair (NER) system is our major defense against carcinogenesis. Defects in NER are associated with several human genetic disorders including xeroderma pigmentosum (XP), which is characterized by a marked predisposition to skin cancer. For initiation of the repair reaction at the genome-wide level, a complex containing one of the gene products involved in XP, the XPC protein, must bind to the damaged DNA site. The UV-damaged DNA-binding protein (UV-DDB), which is impaired in XP group E patients, has also been implicated in damage recognition in global genomic NER, but its precise functions and its relationship to the XPC complex have not been elucidated. However, the recent discovery of the association of UV-DDB with a cullin-based ubiquitin ligase has functionally linked the two damage recognition factors and shed light on novel mechanistic and regulatory aspects of global genomic NER. This article summarizes our current knowledge of the properties of the XPC complex and UV-DDB and discusses possible roles for ubiquitylation in the molecular mechanisms that underlie the efficient recognition and repair of DNA damage, particularly that induced by ultraviolet light irradiation, in preventing damage-induced mutagenesis as well as carcinogenesis.  相似文献   

5.
Riedl T  Hanaoka F  Egly JM 《The EMBO journal》2003,22(19):5293-5303
  相似文献   

6.
Although the basic principle of nucleotide excision repair (NER), which can eliminate various DNA lesions, have been dissected at the genetic, biochemical and cellular levels, the important in vivo regulation of the critical damage recognition step is poorly understood. Here we analyze the in vivo dynamics of the essential NER damage recognition factor XPC fused to the green fluorescence protein (GFP). Fluorescence recovery after photobleaching analysis revealed that the UV-induced transient immobilization of XPC, reflecting its actual engagement in NER, is regulated in a biphasic manner depending on the number of (6-4) photoproducts and titrated by the number of functional UV-DDB molecules. A similar biphasic UV-induced immobilization of TFIIH was observed using XPB-GFP. Surprisingly, subsequent integration of XPA into the NER complex appears to follow only the low UV dose immobilization of XPC. Our results indicate that when only a small number of (6-4) photoproducts are generated, the UV-DDB-dependent damage recognition pathway predominates over direct recognition by XPC, and they also suggest the presence of rate-limiting regulatory steps in NER prior to the assembly of XPA.  相似文献   

7.
Nucleotide excision repair (NER) of DNA damage requires an efficient means of discrimination between damaged and non-damaged DNA. Cells from humans with xeroderma pigmentosum group C do not perform NER in the bulk of the genome and are corrected by XPC protein, which forms a complex with hHR23B protein. This complex preferentially binds to some types of damaged DNA, but the extent of discrimination in comparison to other NER proteins has not been clear. Recombinant XPC, hHR23B, and XPC-hHR23B complex were purified. In a reconstituted repair system, hHR23B stimulated XPC activity tenfold. Electrophoretic mobility-shift competition measurements revealed a 400-fold preference for binding of XPC-hHR23B to UV damaged over non-damaged DNA. This damage preference is much greater than displayed by the XPA protein. The discrimination power is similar to that determined here in parallel for the XP-E factor UV-DDB, despite the considerably greater molar affinity of UV-DDB for DNA. Binding of XPC-hHR23B to UV damaged DNA was very fast. Damaged DNA-XPC-hHR23B complexes were stable, with half of the complexes remaining four hours after challenge with excess UV-damaged DNA at 30 degrees C. XPC-hHR23B had a higher level of affinity for (6-4) photoproducts than cyclobutane pyrimidine dimers, and some affinity for DNA treated with cisplatin and alkylating agents. XPC-hHR23B could bind to single-stranded M13 DNA, but only poorly to single-stranded homopolymers. The strong preference of XPC complex for structures in damaged duplex DNA indicates its importance as a primary damage recognition factor in non-transcribed DNA during human NER.  相似文献   

8.
Wang QE  Zhu Q  Wani MA  Wani G  Chen J  Wani AA 《DNA Repair》2003,2(5):483-499
Functional tumor suppressor p53 is mainly required for efficient global genomic repair (GGR), a subpathway of nucleotide excisions repair (NER). In this study, the regulatory effect of p53, on the spaciotemporal recruitment of XPC and TFIIH to DNA damage sites, was investigated in repair-proficient and -deficient human cells in situ. Photoproducts were induced through micropore UV irradiation of discrete subnuclear areas of intact cells and the specific lesions, as well as recruited repair factors, were detected by immunofluorescent intensity and density of the damaged DNA subnuclear spots (SNS). Both cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts (6-4PP) were visualized in situ at SNS within irradiated nuclear foci. The in situ repair kinetics revealed that p53-WT normal fibroblasts are proficient for the repair of both CPD and 6-4PP, whereas, p53-Null Li-Fraumeni syndrome (LFS) fibroblasts fail to efficiently repair CPD but not 6-4PP. Colocalization experiments of the NER factors showed that in normal human cells, XPC and TFIIH are rapidly and efficiently recruited to DNA damage within SNS. By contrast, recruitment of both XPC and TFIIH to DNA damage in SNS occurred much less efficiently in p53-Null or p53-compromised cells. The total cellular levels of XPC and XPB were similar in both p53-WT and -Null cells and remained unchanged up to 24h following UV irradiation. The results also showed that dispersal of recruited XPC and TFIIH from DNA damage SNS occurs within a short period after DNA damage. Such dispersal requires functional XPA, XPF and XPG proteins. Taken together, the results demonstrated that p53 plays a pronounced role in the damage recognition and subsequent assembly of repair machinery during GGR and the recruitment of XPC and TFIIH to CPD is p53-dependent. Most likely mechanism of this p53 action is through its downstream effector protein, DDB2.  相似文献   

9.
In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position -3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position -6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position -19 to +8. XPG and XPF/ERCC1 endonucleases then cut the damaged DNA at the limit of the opened structure that was previously "labeled" by the positioning of XPC/HR23B and TFIIH.  相似文献   

10.
Nucleotide excision repair (NER) protects genome stability by eliminating DNA helix distorting lesions, such as those induced by UV radiation. The addition and removal of ubiquitin, namely, ubiquitination and deubiquitination, have recently been demonstrated as general mechanisms to regulate protein functions. Accumulating evidence shows that several NER factors are subjected to extensive regulation by ubiquitination and deubiquitination. Thus, the balance between E3 ligases and deubiquitinating enzyme activities can dynamically alter the ubiquitin landscape at DNA damage sites, thereby regulating NER efficiency. Current knowledge about XPC ubiquitination by different ubiquitin E3 ligases highlights the importance of ubiquitin linkage types in regulating XPC binding and release from damaged DNA. Here, we discuss the emerging roles of deubiquitinating enzymes and their ubiquitin linkage specificities in NER.  相似文献   

11.
Fei J  Kaczmarek N  Luch A  Glas A  Carell T  Naegeli H 《PLoS biology》2011,9(10):e1001183
How tightly packed chromatin is thoroughly inspected for DNA damage is one of the fundamental unanswered questions in biology. In particular, the effective excision of carcinogenic lesions caused by the ultraviolet (UV) radiation of sunlight depends on UV-damaged DNA-binding protein (UV-DDB), but the mechanism by which this DDB1-DDB2 heterodimer stimulates DNA repair remained enigmatic. We hypothesized that a distinctive function of this unique sensor is to coordinate damage recognition in the nucleosome repeat landscape of chromatin. Therefore, the nucleosomes of human cells have been dissected by micrococcal nuclease, thus revealing, to our knowledge for the first time, that UV-DDB associates preferentially with lesions in hypersensitive, hence, highly accessible internucleosomal sites joining the core particles. Surprisingly, the accompanying CUL4A ubiquitin ligase activity is necessary to retain the xeroderma pigmentosum group C (XPC) partner at such internucleosomal repair hotspots that undergo very fast excision kinetics. This CUL4A complex thereby counteracts an unexpected affinity of XPC for core particles that are less permissive than hypersensitive sites to downstream repair subunits. That UV-DDB also adopts a ubiquitin-independent function is evidenced by domain mapping and in situ protein dynamics studies, revealing direct but transient interactions that promote a thermodynamically unfavorable β-hairpin insertion of XPC into substrate DNA. We conclude that the evolutionary advent of UV-DDB correlates with the need for a spatiotemporal organizer of XPC positioning in higher eukaryotic chromatin.  相似文献   

12.
13.
14.
15.
16.
The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER.  相似文献   

17.
Damage recognition in nucleotide excision repair of DNA   总被引:27,自引:0,他引:27  
Batty DP  Wood RD 《Gene》2000,241(2):193-204
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.  相似文献   

18.
Bladder cancer has a high incidence with significant morbidity and mortality. Attenuated expression of the DNA damage response protein Xeroderma Pigmentosum complementation group C (XPC) has been described in bladder cancer. XPC plays an essential role as the main initiator and damage-detector in global genome nucleotide excision repair (NER) of UV-induced lesions, bulky DNA adducts and intrastrand crosslinks, such as those made by the chemotherapeutic agent Cisplatin. Hence, XPC protein might be an informative biomarker to guide personalized therapy strategies in a subset of bladder cancer cases. Therefore, we measured the XPC protein expression level and functional NER activity of 36 bladder tumors in a standardized manner. We optimized conditions for dissociation and in vitro culture of primary bladder cancer cells and confirmed attenuated XPC expression in approximately 40% of the tumors. However, NER activity was similar to co-cultured wild type cells in all but one of 36 bladder tumors. We conclude, that (i) functional NER deficiency is a relatively rare phenomenon in bladder cancer and (ii) XPC protein levels are not useful as biomarker for NER activity in these tumors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号