首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The decrease in the metabolic capacity of rat brown adipose tissue during the late postnatal period can be reversed by cold acclimation of the animals. In order to find out whether a parallel decrease in capability for intercellular communication observed during this period is also reversed by cold acclimation, gap junction size and number per unit area of cell surface have been quantified in freeze-fracture replicas; cell diameters have been measured in semi-thin sections. It was found that the specific number of gap junctions remains unchanged during cold acclimation. However, the mean gap junction size increases by 75% and the ratio of gap junctional area per cell volume, an index for intercellular exchange capacity, is doubled. This result illustrates further the parallelism between metabolic capacity and cell communication in brown fat.  相似文献   

2.
Two factors that may determine brown adipose tissue (BAT) hypertrophy during conditions of increased metabolic heat production are increased food intake and increased sympathetic nervous system (SNS) activity. Since these two proceed pari passu during cold exposure, their independent contributions to BAT hypertrophy are unknown. To examine the role of each, we limited the food intake of a group of cold exposed rats by pair feeding them to warm exposed control rats and then compared the pair fed rats to ad lib fed cold exposed animals. Restricted food intake limited absolute BAT hypertrophy (0.226 +/- 0.01 g. vs 0.488 +/- 0.02 g, pair fed vs ad lib, P less than 0.01), BAT as per cent body weight (0.189 +/- 0.12 vs 0.252 +/- 0.012, P less than 0.01) and BAT protein content (34.4 +/- 3.8 vs 48.9 +/- 2.6 mg, P less than 0.01) despite evidence of quantitatively similar activation of the SNS in BAT in both groups. We conclude that increased food intake contributes to BAT hypertrophy in cold exposure independent of sympathetic activity.  相似文献   

3.
In a morphological study of brown adipose tissue (BAT) of rats returned after exposure to cold (+5 degrees C) to neutral temperature (+25 degrees C), striking periodic acid Schiff staining was observed, indicating substantial glycogen accumulation. Enzymatic analysis revealed that the glycogen content increased from the 4.05 +/- 0.51 (micromol glucose unit per gram of tissue, mean +/- SE) control value to 57.3 +/- 9.66 when the animals were returned to neutral temperature for 24 h after a 1-week cold period. Glycogen repletion was also observed in liver and skeletal muscle; however, the glycogen levels in these tissues never exceeded the control values. The accumulation of glycogen in the BAT started by the 3rd hour of replacement and peaked by the 24th hour. This glycogen was readily utilized during the next short cold exposure of the animals. The plasma leptin concentration was reduced at the cold temperature. The hexokinase II activity in the BAT increased to 29.3 +/- 1.46 vs the 11.8 +/- 1.06 control (mU/mg protein +/- SE) after a 1-week cold exposure and this level was maintained during the return to neutral temperature. The total glycogen synthetase (GStot) and the glycogen synthetase a activity also increased after a 1-week cold exposure and increased further during the replacement. The level of GStot reached 26.9 +/- 1.39 vs 9.54 +/- 1.43 control by the 24th hour of replacement. At the same time, the glycogen phosphorylase a activity declined during the replacement. The concentration of glucose 6-phosphate (an activator of GS) decreased in the cold but returned to normal during the replacement. These changes in the BAT are in favor of glycogen synthesis.  相似文献   

4.
5.
Brown adipose tissue(BAT) plays an essential role in non-shivering thermogenesis. The phosphatidylinositol transfer protein,cytoplasmic 1(PITPNC1) is identified as a lipid transporter that reciprocally transfers phospholipids between intracellular membrane structures. However, the physiological significance of PITPNC1 and its regulatory mechanism remain unclear. Here,we demonstrate that PITPNC1 is a key player in thermogenesis of BAT. While Pitpnc1-/-mice do not differ with wildtype m...  相似文献   

6.
The effect of temperature on the amount of uncoupling protein mRNA in rat brown adipose tissue was examined after 1 and 14 days of exposure to cold. The relative amounts after 1 day, compared with rats kept at a thermoneutral temperature of 28 degrees C, were 3.2 at 19 degrees C, 3.3 at 11 degrees C, and 2.1 at 3 degrees C. This suggests that in warm-acclimated rats, a maximal response to a cold stimulus in brown adipose tissue is reached by 19 degrees C. In contrast to these results, the relative amounts of uncoupling protein mRNA after 14 days of cold exposure, compared with rats left at 28 degrees C, were 1.2 at 19 degrees C, 1.9 at 11 degrees C, and 2.1 at 3 degrees C. Since it is known that the amount of uncoupling protein in cold-acclimated rats increases continuously with decrease in temperature, the amount of protein reflects the mRNA levels during later times but not the initial time of exposure to cold.  相似文献   

7.
Hormone-sensitive lipase (HSL) in brown adipose tissue from mice was identified through immunoprecipitation with a polyclonal antibody (anti-HSL) towards rat white fat HSL and Western blotting. An 82 kDa polypeptide, slightly smaller than the rat white fat HSL 84 kDa subunit, was detected and its identity as HSL verified by inhibition properties. The HSL concentration per g tissue was several-fold higher in the mouse brown adipose tissue than in the rat white adipose tissue, but the specific activities per mg protein were similar. Cold-exposure (4°C of the mice for 24 h approximately doubled the HSL concentration but this increase parallelled the overall protein increase and did not reflect a specific effect on the HSL.  相似文献   

8.
1. Lipid peroxidation in the interscapular brown adipose tissue (iBAT) and liver was studied in rats acclimated to room (23±1 °C) and low temperature (5±1 °C, 42 days), as well as in animals exposed to 5±1 °C for 24 h; in addition, the tissue metallothionein (MT) and iron were determined.  相似文献   

9.
Exposure of rats to the cold (4-5 degrees C) caused large (2-3-fold) increases in the mass of interscapular brown adipose tissue (BAT), its mitochondrial content and the basal metabolic rate of the animals. The rate of substrate oxidation by BAT mitochondria also increased about 3-fold. When cold-acclimated animals were exposed to heat (37 degrees C), the BMR decreased by half in 3 h, the earliest time interval tested. Mitochondrial substrate oxidation, as well as substrate-dependent H2O2 generation, showed a proportionate decrease in rates. In these mitochondria, activities of cytochrome c reductases, but not dehydrogenases with NADH, alpha-glycerophosphate and succinate as substrates, also showed a significant decrease. The concentration of cytochromes aa3 and b, but not cytochrome c, also decreased in BAT mitochondria from 12-h heat-exposed animals, while the change in concentration of cytochrome b alone was found as early as 3 h of heat exposure. These results identify the change in cytochromes as a mechanism of regulation of oxidative activities in BAT mitochondria under conditions of acute heat stress.  相似文献   

10.
11.
GDP binding to brown-adipose-tissue mitochondria was decreased in obese Zucker rats. Adrenalectomy restored both GDP binding and serum tri-iodothyronine of obese rats to values observed in lean rats. The effects of adrenalectomy on GDP binding and serum tri-iodothyronine were reversed by corticosterone. Decreasing food intake had no effect on brown-adipose-tissue GDP binding in obese rats. Young (5-week-old) obese rats showed a normal increase in brown-adipose-tissue mitochondrial GDP binding after housing at 4 degrees C for 7 days, but this response was attenuated in 10-week-old obese rats. Overfeeding with sucrose increased brown-adipose-tissue thermogenesis in lean, but not in obese, rats. After adrenalectomy, overfeeding with sucrose enhanced brown-adipose-tissue mitochondrial GDP binding in obese rats.  相似文献   

12.
Acclimation of rats to cold caused 45% increase in the concentration of triidothyronine (T3) and 35% increase in the concentration of thyroxine (T4) in serum. Exposure of cold-acclimated rats to heat (12 hr, 37 degrees C) failed to decrease the concentrations of thyroid hormones in circulation. The concentration of T3 in brown adipose tissue (BAT) increased almost 10-fold on cold acclimation. Iodothyronine deiodinase activity also registered 3-fold increase. Exposure of cold-acclimated animals to heat caused decrease in the concentration of T3 in BAT without appreciably affecting T4 concentration. In liver tissue, the changes in hormone concentrations were quite small compared to those in BAT. On thyroidectomy or when fed with propyl thiouracil, rats could not survive exposure to the cold. The concentration of insulin in circulation showed small increase, while that in the tissues showed significant decrease on acclimation of rats to the cold. The concentration of the hormone in BAT registered significant increase on exposure of cold-acclimated animals to heat (12 hr, 37 degrees C). The increase in liver was marginal. The temperature-dependent response of T3 indicates an important role for this hormone in rapid physiological response in BAT.  相似文献   

13.
R Bertin 《Biochimie》1976,58(4):431-434
Glycerol release by brown adipocytes from constant cold adapted rats was not stimulated by norepinephrine. On the contrary, the release was stimulated in rats adapted to a nycthemeral fluctuatiing temperature from 5 degrees to 28 degrees C. Glycerokinase activity was greatly increased in brown adipose tissue by cold adptation ; there was no change in the liver. However this increased activity cannot entirely explain the lack of norepinephrine stimulation of glycerol release in the brown adipose tissue of cold adapted rats.  相似文献   

14.
15.
16.
1. Time-course variations of the thermogenic pathway in rat brown adipose tissue (BAT) mitochondria were examined. 2. Several parameters of mitochondrial energization, protonmotive force and its components pH gradient and membrane potential were investigated. The specific binding of GDP was compared with the effective proton conductance (CmH+) of the membrane. 3. Ten-days cold exposure led to maximal GDP binding and GDP-dependent CmH+. 4. The subsequent relative decrease in GDP binding observed during prolonged cold exposure (40 days) was functional and led to a lower GDP-dependent CmH+. CmH+ showed greater variation than GDP binding. 5. The CmH+ decrease was not due to a masking of active sites of the uncoupling protein. 6. Basal GDP-independent CmH+ was not modified. 7. Results are discussed with reference to the significance of biochemical measures and to the physiological regulation of BAT thermogenesis.  相似文献   

17.
In cold acclimated rats, in vitro, NE led to a significant increase in release of FFA and glycerol in denervated IBAT. In vivo, study of arteriovenous differences showed that the denervated BAT loses its full capacity to utilize FFA and glycerol released by NE. After denervation an increase of blood flow in Sulzer's vein was observed. This effect appeared immediately after intervention whereas the effect on fat metabolism appeared later. In cold acclimated rats, the sympathetic nervous system appears to be an important regulator of fatty acid metabolism in BAT.  相似文献   

18.
19.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

20.
A significant diurnal variation in the rates of lipogenesisin vivo in brown adipose tissue occurred in both virgin and lactating rats. On a meal-feeding regime of either a chow, high-sucrose, or high-lipid diet, there was a very large increase in BAT lipogenesis following the meal. The rates observed after the sucrose meal are the highest so far reported. There was no significant difference in BAT lipogenesis between lactating and virgin rats, contrary to previous reports by others. The pattern of stimulation of BAT lipogenesis by these feeding regimes was different from that for white adipose tissue and liver and was not correlated with plasma insulin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号