首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exportin-5 is a nuclear export receptor for certain classes of double-stranded RNA (dsRNA), including pre-micro-RNAs, viral hairpin RNAs, and some tRNAs. It can also export the RNA binding proteins ILF3 and elongation factor EF1A. However, the rules that determine which RNA binding proteins are exportin-5 cargoes remain unclear. JAZ possesses an unusual dsRNA binding domain consisting of multiple C2H2 zinc fingers. We found that JAZ binds to exportin-5 in a Ran-GTP- and dsRNA-dependent manner. Exportin-5 stimulates JAZ shuttling, and gene silencing of exportin-5 reduces shuttling. Recombinant exportin-5 also stimulates nuclear export of JAZ in permeabilized cells. JAZ also binds to ILF3, and surprisingly, this interaction is RNA independent, even though it requires the dsRNA binding domains of ILF3. Exportin-5, JAZ, and ILF3 can form a heteromeric complex with Ran-GTP and dsRNA, and JAZ increases ILF3 binding to exportin-5. JAZ does not contain a classical nuclear localization signal, and in digitonin-permeabilized cells, nuclear accumulation of JAZ does not require energy or cytosol. Nonetheless, low temperatures prevent JAZ import, suggesting that nuclear entry does not occur via simple diffusion. Together, these data suggest that JAZ is exported by exportin-5 but translocates back into nuclei by a facilitated diffusion mechanism.  相似文献   

2.
Nuclear and mitochondrial origin of rat liver double-stranded RNA.   总被引:1,自引:0,他引:1  
L Harel  G Riou  L Montagnier 《Biochimie》1975,57(2):227-233
  相似文献   

3.
p68 RNA helicase, a nuclear RNA helicase, was identified 2 decades ago. The protein plays very important roles in cell development and organ maturation. However, the biological functions and enzymology of p68 RNA helicase are not well characterized. We report the expression and purification of recombinant p68 RNA helicase in a bacterial system. The recombinant p68 is an ATP-dependent RNA helicase. ATPase assays demonstrated that double-stranded RNA (dsRNA) is much more effective than single-stranded RNA in stimulating ATP hydrolysis by the recombinant protein. Consistently, RNA-binding assays showed that p68 RNA helicase binds single-stranded RNA weakly in an ATP-dependent manner. On the other hand, the recombinant protein has very high affinity for dsRNA. Binding of the protein to dsRNA is ATP-independent. The data indicate that p68 may directly target dsRNA as its natural substrate. Interestingly, the recombinant p68 RNA helicase unwinds dsRNA in both 3' --> 5' and 5' --> 3' directions. This is the second example of a Asp-Glu-Ala-Asp (DEAD) box RNA helicase that unwinds RNA duplexes in a bi-directional manner.  相似文献   

4.
5.
Members of the nuclear factor 90 (NF90) family of human double-stranded RNA (dsRNA) binding proteins are phosphorylated and translocate into the cytoplasm with the onset of mitosis. We investigated the mechanism of translocation for NF90 and NF110, its larger splice variant. During interphase, NF90 is predominantly nuclear, NF110 is exclusively nuclear, and both are bound to RNA. About half of the NF90 is tethered in the nucleus by RNA bound to the protein's dsRNA-binding motifs. The nuclear localization of NF110 is also dependent on RNA binding but is independent of these motifs, and is governed by contacts made to the protein's unique C terminus. During mitosis, about half of the cytoplasmic NF90 becomes dissociated from RNA, but phosphorylation does not impair the binding affinity of either NF90 or NF110 for dsRNA. We conclude that NF90 and NF110 engage RNA differentially and translocate from the nucleus to the cytoplasm in mitosis because phosphorylation disturbs their interactions with other nuclear proteins.  相似文献   

6.
Ali S  Kukolj G 《Journal of virology》2005,79(5):3174-3178
The treatment of human embryonic kidney 293 cells harboring a hepatitis C virus (HCV) subgenomic replicon with the double-stranded RNA (dsRNA) mimic poly(I . C) inhibits HCV RNA replication through an undefined mechanism. Interferon regulatory factor 3 (IRF 3) has been widely postulated to mediate various antiviral responses, and its role in mediating the response to dsRNA in 293 cells was examined. Treating the cells with dsRNA did not induce IRF-3 activation, as measured by nuclear localization or the induction of reporter genes. Moreover, the expression of a dominant negative form of IRF-3 did not affect either colony formation upon transfection of subgenomic replicon RNA or the inhibition of the HCV replicon by dsRNA. Our results suggest that the inhibition of HCV RNA replication by poly(I . C) in 293 cells is independent of IRF-3 activation.  相似文献   

7.
Summary Double-stranded RNA (dsRNA) was isolated from rice Oryza sativa ssp. japonica, but not from other subspecies. The dsRNA has been found in all of the examined cytoplasmic male-sterile (CMS) lines of BT (Chinsurah Boro II)-type rice, but was not detected in their companionate maintainer lines. It is uniquely and positivley correlated with the CMS trait in BT-type rice. Recently, the dsRNA was also found in a nuclear malesterile (NMS) rice, Nongken 58s, but was not found in its normal Nongken 58. The molecular weight of this dsRNA was estimated to be about 18 kb. Electron microscopic analysis reveals that it is linear snapped. The double strandedness of the RNA molecules was characterized by CF-11 cellulose column chromatography and nuclease treatments. It bound to CF-11 cellulose in the presence of 15% ethanol. It was sensitive to RNase A at low salt concentrations, but insensitive to DNase I, SI nuclease, and RNase A at high salt concentrations. The dsRNA was detected in both mitochondrial and cytoplasmic fractions. Dot-blot hybridization reveals that there is no sequence homology between this dsRNA and mtDNA, but there is homology between this dsRNA and nuclear genomic DNA. We have not been able to transmit this dsRNA to fertile rice.  相似文献   

8.
9.
10.
11.
12.
Double-stranded RNA (dsRNA)-specific adenosine deaminase converts adenosine to inosine in dsRNA. The protein has been purified from calf thymus, and here we describe the cloning of cDNAs encoding both the human and rat proteins as well as a partial bovine clone. The human and rat clones are very similar at the amino acid level except at their N termini and contain three dsRNA binding motifs, a putative nuclear targeting signal, and a possible deaminase motif. Antibodies raised against the protein encoded by the partial bovine clone specifically recognize the calf thymus dsRNA adenosine deaminase. Furthermore, the antibodies can immunodeplete a calf thymus extract of dsRNA adenosine deaminase activity, and the activity can be restored by addition of pure bovine deaminase. Staining of HeLa cells confirms the nuclear localization of the dsRNA-specific adenosine deaminase. In situ hybridization in rat brain slices indicates a widespread distribution of the enzyme in the brain.  相似文献   

13.
Summary A study has been made of the regulation of the synthesis of Pl double-stranded (ds) RNA, the genome of the yeast virus-like particle. When yeast protein synthesis is prevented by starvation for a required amino acid or by addition of cycloheximide, the rate of Pl dsRNA synthesis is reduced markedly. During nitrogen starvation the synthesis of Pl dsRNA persists but is accompanied by the degradation of pre-existing molecules. This degradation appears to require the induction of new enzymes and it is likely that the breakdown products are used to enable the cell to complete its division cycle. However, all of the copies of the VLP genome are not degraded in this process, some are conserved and can replenish the amount of Pl dsRNA on return to growth conditions. The controls which must operate on Pl dsRNA synthesis are discussed and compared with those exerted on nuclear RNA synthesis in yeast.Paper III in this series is Elliott and McLaughlin (Molec. Gen. Genet., In press)  相似文献   

14.
15.
16.
Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles.  相似文献   

17.
The RNA-dependent protein kinase (PKR) plays an integral role in the antiviral response to cellular infection. PKR contains three distinct domains consisting of two conserved N-terminal double-stranded RNA (dsRNA)-binding domains, a C-terminal Ser-Thr kinase domain, and a central 80-residue linker. Despite rich structural and biochemical data, a detailed mechanistic explanation of PKR activation remains unclear. Here we provide a framework for understanding dsRNA-dependent activation of PKR using nuclear magnetic resonance spectroscopy, dynamic light scattering, gel filtration, and autophosphorylation kinetics. In the latent state, PKR exists as an extended monomer, with an increase in self-affinity upon dsRNA association. Subsequent phosphorylation leads to efficient release of dsRNA followed by a greater increase in self-affinity. Activated PKR displays extensive conformational perturbations within the kinase domain. We propose an updated model for PKR activation in which the communication between RNA binding, central linker, and kinase domains is critical in the propagation of the activation signal and for PKR dimerization.  相似文献   

18.
Double-stranded RNA (dsRNA) longer than 30 bp is a key activator of the innate immune response against viral infections. It is widely assumed that the generation of dsRNA during genome replication is a trait shared by all viruses. However, to our knowledge, no study exists in which the production of dsRNA by different viruses is systematically investigated. Here, we investigated the presence and localization of dsRNA in cells infected with a range of viruses, employing a dsRNA-specific antibody for immunofluorescence analysis. Our data revealed that, as predicted, significant amounts of dsRNA can be detected for viruses with a genome consisting of positive-strand RNA, dsRNA, or DNA. Surprisingly, however, no dsRNA signals were detected for negative-strand RNA viruses. Thus, dsRNA is indeed a general feature of most virus groups, but negative-strand RNA viruses appear to be an exception to that rule.  相似文献   

19.
The trait of cytoplasmic male sterility, expressed in plants bearing the 447 cytoplasm of Vicia faba, is uniquely and positively correlated with the presence of a linear double-stranded RNA molecule (dsRNA) 16.7 kb in size. Restriction enzyme digestion profiles of mitochondrial DNA isolated from fertile and cytoplasmic malesterile (CMS) lines do show a limited number of specific differences in fragment intensities and mobilities. However, mitochondria isolated from the progeny of the cross CMS × Restorer line contain DNA with an identical restriction profile as the male-sterile parent: moreover, subsequent generations are completely and permanently fertile, even upon segregation of the nuclear restoration gene. Southern hybridizations, using cDNA clones as probes, reveal homology between the CMS-associated dsRNA and the nuclear genome of both sterile and fertile lines. The regions cloned, representing approximately 22% of the total dsRNA sequence, show no homology to organelle DNA. We have not been able to stably transmit the dsRNA to fertile lines of V. faba or any other plant species, using a variety of standard virological techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号