首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genes involved in anaerobic degradation of the petroleum hydrocarbon ethylbenzene in the denitrifying Azoarcus-like strain EbN1 were identified on a 56-kb DNA contig obtained from shotgun sequencing. Ethylbenzene is first oxidized via ethylbenzene dehydrogenase to (S)-1-phenylethanol; this is converted by (S)-1-phenylethanol dehydrogenase to acetophenone. Further degradation probably involves acetophenone carboxylase forming benzoylacetate, a ligase forming benzoylacetyl-CoA, and a thiolase forming acetyl-CoA and benzoyl-CoA. Genes of this pathway were identified via N-terminal sequences of proteins isolated from strain EbN1 and by sequence similarities to proteins from other bacteria. Ethylbenzene dehydrogenase is encoded by three genes (ebdABC), in accordance with the heterotrimeric enzyme structure. Binding domains for a molybdenum cofactor (in subunit EbdA) and iron/sulfur-clusters (in subunits EbdA and EbdB) were identified. The previously observed periplasmic location of the enzyme was corroborated by the presence of a twin-arginine leader peptide characteristic of the Tat system for protein export. A fourth gene (ebdD) was identified, the product of which may act as an enzyme-specific chaperone in the maturation of the molybdenum-containing subunit. A distinct gene (ped) coding for (S)-1-phenylethanol dehydrogenase apparently forms an operon with the ebdABCD genes. The ped gene product with its characteristic NAD(P)-binding motif in the N-terminal domain belongs to the short-chain dehydrogenase/reductase (SDR) superfamily. A further operon apparently contains five genes (apc1-5) suggested to code for subunits of acetophenone carboxylase. Four of the five gene products are similar to subunits of acetone carboxylase from Xanthobacter autotrophicus. Upstream of the apc genes, a single gene (bal) was identified which possibly codes for a benzoylacetate CoA-ligase and which is co-transcribed with the apc genes. In addition, an apparent operon containing almost all genes required for beta-oxidation of fatty acids was detected; one of the gene products may be involved in thiolytic cleavage of benzoylacetyl-CoA. The DNA fragment also included genes for regulatory systems; these were two sets of two-component systems, two LysR homologs, and a TetR homolog. Some of these proteins may be involved in ethylbenzene-dependent gene expression.  相似文献   

2.
3.
Pseudomonas sp. strain T and Pseudomonas sp. strain K172 grow with toluene under denitrifying conditions. We demonstrated that anaerobic degradation of toluene was initiated by direct oxidation of the methyl group. Benzaldehyde and benzoate accumulated sequentially after toluene was added when cell suspensions were incubated at 5 degrees C. Strain T also grows anaerobically with m-xylene, and we demonstrated that degradation was initiated by oxidation of one methyl group. In cell suspensions incubated at 5 degrees C 3-methylbenzaldehyde and 3-methylbenzoate accumulated after m-xylene was added. Toluene- or m-xylene-grown strain T cells were induced to the same extent for oxidation of both hydrocarbons. In addition, the methyl group-oxidizing enzyme system of strain T also catalyzed the oxidation of each isomer of the chloro- and fluorotoluenes to the corresponding halogenated benzoate derivatives. In contrast, strain K172 only oxidized 4-fluorotoluene to 4-fluorobenzoate, probably because of the narrow substrate specificity of the methyl group-oxidizing enzymatic system. During anaerobic growth with toluene strains T and K172 produced two transformation products, benzylsuccinate and benzylfumarate. About 0.5% of the toluene carbon was converted to these products.  相似文献   

4.
5.
Nitrate-reducing bacteria of the recently recognized Azoarcus/Thauera group within the Betaproteobacteria contribute significantly to the biodegradation of aromatic and other refractory compounds in anoxic waters and soils. Strain EbN1 belongs to a distinct cluster (new genus) and is the first member of this phylogenetic group, the genome of which has been determined (4.7 Mb; one chromosome, two plasmids) by [Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36]. Ten anaerobic and four aerobic aromatic-degradation pathways were recognized on the chromosome, with the coding genes mostly forming clusters. Presence of paralogous gene clusters (e.g. for anaerobic ethylbenzene degradation) suggests an even broader degradation spectrum than previously known. Metabolic versatility is also reflected by the presence of multiple respiratory complexes and is apparently controlled by an extensive regulatory network. Strain EbN1 is unique for its capacity to degrade toluene and ethylbenzene anaerobically via completely different pathways. Bioinformatical analysis of their genetic blueprints and global expression analysis (DNA-microarray and proteomics) of substrate-adapted cells [Kühner S, Wöhlbrand L, Fritz I, Wruck W, Hultschig C, Hufnagel P, Kube M, Reinhardt R, Rabus R (2005) Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1. J Bacteriol 187:1493–1503] indicated coordinated vs sequential modes of regulation for the toluene and ethylbenzene pathways, respectively.  相似文献   

6.
7.
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page .Electronic Supplementary Material Supplementary material is available for this article at Dedicated to Prof. Dr. h.c. Gerhard Gottschalk on the occasion of his 70th birthday.  相似文献   

8.
Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida   总被引:20,自引:0,他引:20  
  相似文献   

9.
Anaerobic oxidation of p-cresol by a denitrifying bacterium.   总被引:2,自引:8,他引:2       下载免费PDF全文
Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. Nitrate is required as the external electron acceptor and is reduced to molecular N2. Reduction of the nitrate is stoichiometric, with pCr serving as the electron donor. In addition, the molar relationship between the electron acceptor (NO3-) reduced to the electron donor oxidized decreased to approximately 2:3 and then to 1:3 when p-hydroxybenzyl alcohol or p-hydroxybenzaldehyde, respectively, served as substrates. The decreased ratios were to be expected when the partially oxidized intermediates served as substrates, because they provided correspondingly less reducing power for pOHB formation. The anaerobic oxidation of pCr by PC-07 demonstrates a mechanism whereby aromatic compounds can be transformed in anoxic environments.  相似文献   

10.
Summary A denitrifying bacterium showing typical characteristics of Pseudomonas sp. (Al1) capable of growth on 1-heptadecene as the sole source of carbon and energy has been isolated from a hydrocarbon-polluted marine sediment by using classical enrichment techniques. The generation time for anaerobic growth on 1-heptadecene was 24 h, and the percentage of hydrocarbon degradation under anaerobic conditions ranged from 19 to 23%. The emulsifying capacity was observed and suggested that Al1 cultivated anaerobically on heptadecene produced surface-active agents. Offprint requests to: M. Gilewicz  相似文献   

11.
Anaerobic oxidation of p-cresol by a denitrifying bacterium   总被引:2,自引:0,他引:2  
Metabolism of p-cresol (pCr) under nitrate-reducing conditions is mediated by the denitrifying bacterial isolate PC-07. The methyl substituent of the substrate is oxidized anaerobically by whole-cell suspensions of PC-07 through a series of dehydrogenation and hydration reactions to yield p-hydroxybenzoate (pOHB) in stoichiometric proportions. The partially oxidized intermediates in the pathway p-hydroxybenzyl alcohol and p-hydroxybenzaldehyde can also serve as substrates for pOHB formation. Nitrate is required as the external electron acceptor and is reduced to molecular N2. Reduction of the nitrate is stoichiometric, with pCr serving as the electron donor. In addition, the molar relationship between the electron acceptor (NO3-) reduced to the electron donor oxidized decreased to approximately 2:3 and then to 1:3 when p-hydroxybenzyl alcohol or p-hydroxybenzaldehyde, respectively, served as substrates. The decreased ratios were to be expected when the partially oxidized intermediates served as substrates, because they provided correspondingly less reducing power for pOHB formation. The anaerobic oxidation of pCr by PC-07 demonstrates a mechanism whereby aromatic compounds can be transformed in anoxic environments.  相似文献   

12.
An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.  相似文献   

13.
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.  相似文献   

14.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test, Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bacterium, strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concentration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9°C, respectively. Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammonium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d), respectively, and the consumption ratio of ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell in clusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome. The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.  相似文献   

15.
A strain D3 of denitrifying bacterium was isolated from an anammox reactor,and identi-fied as Pseudomonas mendocina based on the morphological and physiological assay,Vitek test,Biolog test,(G C) mol% content,and 16S rDNA phylogenetic analysis.As a typical denitrifying bac-terium,strain D3 achieved the maximal nitrate reduction rate of 26.2 mg/(L·d) at the nitrate concen-tration of 88.5 mg N/L.The optimal pH and growth temperature were 7.84 and 34.9℃,respectively.Strain D3 was able to oxidize ammonia under anaerobic condition.The maximum nitrate and ammo-nium utilization rates were 6.37 mg/(L·d) and 3.34 mg/(L·d) ,respectively,and the consumption ratio of ammonia to nitrate was 1:1.91.Electron microscopic observation revealed peculiar cell inclusions in strain D3.Because of its relation to anammox activity,strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability,and the results have engorged the range of anammox populations.  相似文献   

16.
The pathway of anaerobic acetone degradation by the denitrifying bacterial strain BunN was studied by enzyme measurements in extracts of anaerobic acetone-grown cells. An ADP- and MgCl2-dependent decarboxylation of acetoacetate was detected which could not be found in cell-free extracts of acetate-grown cells. It is concluded that free acetoacetate is formed by ATP-dependent carboxylation of acetone. Acetoacetate was converted into its coenzyme A ester by succinyl-CoA: acetoacetate CoA transferase, and cleaved by a thiolase into acetyl-CoA. The acetyl residue was completely oxidized in the citric acid cycle. The ADP-dependent decarboxylation of acetoacetate was inhibited by EDTA, but not by avidin. High myokinase activities led to equilibrium amounts of ATP, ADP, and AMP in the reaction mixtures, and prevented determination of the decarboxylase reaction stoichiometry, therefore.Abbreviations ADP adenosine diphosphate - AMP adenosine monophosphate - ATP adenosine triphosphate - BSA bovine serum albumine - MOPS 3-(N-morpholino)propanesulfonic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - PHB poly--hydroxybutyrate - Tris Tris-(hydroxymethyl-) aminomethane  相似文献   

17.
Summary Six strains of Rhizobium, present as bacteroids, in Lotus nodules were studied by electron microscopy. Three inclusion bodies frequently detected are described and their distribution among the strains is given. Cytochemical techniques indicated that they have, as principal components, polyphosphate, lipid and neutral polysaccharide, probably glycogen, respectively.  相似文献   

18.
19.
A novel alphaproteobacterium isolated from freshwater sediments, strain pMbN1, degrades 4-methylbenzoate to CO(2) under nitrate-reducing conditions. While strain pMbN1 utilizes several benzoate derivatives and other polar aromatic compounds, it cannot degrade p-xylene or other hydrocarbons. Based on 16S rRNA gene sequence analysis, strain pMbN1 is affiliated with the genus Magnetospirillum.  相似文献   

20.
高效反硝化菌aHD7的筛分、脱氮特性及厌氧氨氧化性   总被引:1,自引:0,他引:1  
从活性污泥中筛选出一株高效反硝化菌aHD7,30℃静置培养3d,脱氮率可达91.7%,且反应过程中亚硝酸盐积累量较低,3d后亚硝酸盐氮浓度基本稳定在1.8mg.L-1.显微镜观察显示,菌株为革兰氏阴性杆菌,大小为0.5 μm×(1.5~2.5) μm.通过生理生化特性及16S rDNA同源性分析,初步推断该菌株为门多萨假单胞菌(Pseudomonas mendocina).考察了碳源、C/N、氮初始浓度、pH等因素对菌株反硝化性能的影响.结果表明:对中低浓度硝酸盐(硝酸盐氮浓度≤276.95 mg.L-1),脱氮率接近100%,硝酸盐氮浓度高达553.59 mg·L-1时,脱氮率可达66.8%,且亚硝酸盐积累量甚微;最适碳源为乙醇;C/N为6~8和偏中性条件有利于反硝化反应.aHD7具有较强的厌氧氨氧化性,平均氨利用率达4.56 mg·L-1·d-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号