首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of a guanine nucleotide analog, guanosine 5'-O-(thiotriphosphate) (GTP gamma S)(1-100 microM) induced release of [3H]arachidonic acid from [3H]arachidonate-prelabeled rabbit neutrophils permeabilized with saponin. The chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced arachidonate release was enhanced by GTP gamma S, Ca2+, or their combination. Ca2+ alone (up to 100 microM) did not effectively stimulate lipid turnover. However, the combination of fMLP plus GTP gamma S elicited greater than additional effects in the presence of resting level of free Ca2+. The addition of 100 microM of GTP gamma S reduced the Ca2+ requirement for arachidonic acid liberation induced by fMLP. Pretreatment of neutrophils with pertussis toxin resulted in the abolition of arachidonate release and diacylglycerol formation. Neomycin (1 mM) caused no significant reduction of arachidonate release. In contrast, about 40% of GTP gamma S-induced arachidonate release was inhibited by a diacylglycerol lipase inhibitor, RHC 80267 (30 microM). These observations indicate that liberation of arachidonic acid is mediated by phospholipase A2 and also by phospholipase C/diacylglycerol lipase pathways. Fluoride, which bypasses the receptor and directly activates G proteins, induced arachidonic acid release and diacylglycerol formation. The fluoride-induced arachidonate release also appeared to be mediated by these two pathways. The loss of [3H]arachidonate was seen in phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine. These data indicate that a G protein is involved between the binding of fMLP to its receptor and activation of phospholipase A2, and also that the arachidonic acid release is mediated by both phospholipase A2 and phospholipase C/diacylglycerol lipase.  相似文献   

2.
1. When rat astrocytes in primary culture were incubated with bradykinin, inositol phosphate formation and arachidonic acid release were stimulated. 2. By themselves, phorbol esters inhibited inositol phosphate formation, but phorbol esters and other cell-permeant diacylglycerol analogues stimulated arachidonic acid release. Preincubation of the cells with phorbol esters or diacylglycerol analogues blocked bradykinin-stimulated inositol phosphate formation but augmented bradykinin-stimulated arachidonic acid release. 3. The present results suggest that, in astrocytes, bradykinin activates at least two signal transduction pathways bradykinin stimulates a phosphatidylinositol-specific phospholipase C leading to enhanced inositol phosphate formation, and bradykinin stimulates a second phospholipase to enhance arachidonic acid release. The pathways may be distinguished using phorbol esters and other diacylglycerol mimetics. 4. The possibility is raised that diacylglycerol, formed in response to bradykinin, may serve as a transducer of receptor-receptor interactions by altering the ability of receptors to stimulate phospholipase activity.  相似文献   

3.
We have previously shown that acetylcholine-induced contraction of oesophageal circular muscle depends on activation of phosphatidylcholine selective phospholipase C and D, which result in formation of diacylglycerol, and of phospholipase 2 which produces arachidonic acid. Diacylglycerol and arachidonic acid interact synergistically to activate protein kinase C. We have therefore investigated the relationship between cytosolic Ca(2+) and activation of phospholipase A(2) in response to acetylcholine-induced stimulation, by measuring the intracellular free Ca(2+) ([Ca(2+)]i), muscle tension, and [3H] arachidonic acid release. Acetylcholine-induced contraction was associated with increased [Ca(2+)]i and arachidonic acid release in a dose-dependent manner. In Ca(2+)-free medium, acetylcholine did not produce contraction, [Ca(2+)]i increase, and arachidonic acid release. In contrast, after depletion of Ca(2+) stores by thapsigargin (3 microM), acetylcholine caused a normal contraction, [Ca(2+)]i increase and arachidonic acid release. The increase in [Ca(2+)]i and arachidonic acid release were attenuated by the M2 receptor antagonist methoctramine, but not by the M3 receptor antagonist p-fluoro-hexahydro siladifenidol. Increase in [Ca(2+)]i and arachidonic acid release by acetylcholine were inhibited by pertussis toxin and C3 toxin. These findings indicate that contraction and arachidonic acid release are mediated through muscarinic M2 coupled to Gi or rho protein activation and Ca(2+) influx. Acetylcholine-induced contraction and the associated increase in [Ca(2+)]i and release of arachidonic acid were completely reduced by the combination treatment with a phospholipase A(2) inhibitor dimethyleicosadienoic acid and a phospholipase D inhibitor pCMB. They increased by the action of the inhibitor of diacylglycerol kinase R59949, whereas they decreased by a protein kinase C inhibitor chelerythrine. These data suggest that in oesophageal circular muscle acetylcholine-induced [Ca(2+)]i increase and arachidonic acid release are mediated through activation of M2 receptor coupled to Gi or rho protein, resulting in the activation of phospholipase A(2) and phospholipase D to activate protein kinase C.  相似文献   

4.
Alpha 1-Adrenergic receptors and bradykinin receptors are two distinct membrane receptors that stimulate phospholipid breakdown and arachidonic acid and arachidonic acid metabolite release. In the current studies, we have examined several mechanisms to assess their possible contribution to arachidonic acid release in the Madin-Darby canine kidney cell line by agonist stimulation of these receptors: 1) activation of phospholipase A2 (PLA2); 2) sequential activation of phospholipase C, diacylglycerol lipase, and monoacylglycerol lipase; and 3) inhibition of the sequential action of fatty acyl-CoA synthetase and lysophosphatide acyltransferase. Experiments were conducted to measure the stimulation of lysophospholipid production by epinephrine and bradykinin, the rate of incorporation of [3H]arachidonic acid into stimulated and unstimulated cells, and the effect on [3H]arachidonic acid release of treating cells with exogenous phospholipase C. The data indicate that stimulation of PLA2 activity is regulated by alpha 1-adrenergic and bradykinin receptors and that this stimulation is mediated, at least in part, by the activation of protein kinase C. We find that the role of diacylglycerol in arachidonic acid release is as an activator of protein kinase C and not as a substrate for a lipase. Moreover, the hormonal agonists do not appear to inhibit fatty acid reacylation. Experiments using the Ca2(+)-sensitive dye fura-2 and the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid suggest that bradykinin activates PLA2 by a transient elevation of intracellular Ca2+. This action appears to be less important for activation of PLA2 by epinephrine. Taken together, these data are consistent with the following conclusions. 1) Hormone-stimulated arachidonic acid release in Madin-Darby canine kidney-D1 cells occurs as a consequence of PLA2 activation. 2) The ability of an agonist both to mobilize Ca2+ and to activate protein kinase C contributes to its efficacy as a stimulator of PLA2-mediated arachidonic acid release.  相似文献   

5.
Exposure of mouse peritoneal macrophages to ionophore A23187 caused a rapid and extensive Ca2+-dependent phospholipid degradation and mobilization of arachidonic acid. Phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine all contributed to the arachidonic acid release, although the ethanolamine phospholipids incorporated [3H]arachidonic acid more slowly during the prelabeling period, particularly the plasmalogen form. Several enzymatic pathways could be positively identified as contributing to the ionophore-induced phospholipid degradation by the use of several different radiolabeled phospholipid precursors: (i) a phospholipase A-mediated deacylation, (ii) a phosphodiesterase (phospholipase C) reaction, rapidly generating diacylglycerol units from inositol phospholipids, and (iii) enzymatic processes generating diacylglycerol and CDP- and phosphocholine/ethanolamine from phosphatidylcholine/ethanolamine. The diacylglycerol formed was in part phosphorylated and in part hydrolyzed to monoacylglycerol, with retention of its arachidonic acid. These, and other, results indicate that the Ca2+-ionophore activates several apparently distinct phospholipid-degrading processes, in contrast to stimuli acting via cellular receptors.  相似文献   

6.
alpha 1-Adrenergic receptors mediate two effects on phospholipid metabolism in Madin-Darby canine kidney (MDCK-D1) cells: hydrolysis of phosphoinositides and arachidonic acid release with generation of prostaglandin E2 (PGE2). The similarity in concentration dependence for the agonist (-)-epinephrine in eliciting these two responses implies that they are mediated by a single population of alpha 1-adrenergic receptors. However, we find that the kinetics of the two responses are quite different, PGE2 production occurring more rapidly and transiently than the hydrolysis of phosphoinositides. The antibiotic neomycin selectively decreases alpha 1-receptor-mediated phosphatidylinositol 4,5-bisphosphate hydrolysis without decreasing alpha 1-receptor-mediated arachidonic acid release and PGE2 generation. In addition, receptor-mediated inositol trisphosphate formation is independent of extracellular calcium, whereas release of labeled arachidonic acid is largely calcium-dependent. Moreover, based on studies obtained with labeled arachidonic acid, receptor-mediated generation of arachidonic acid cannot be accounted for by breakdown of phosphatidylinositol monophosphate, phosphatidylinositol bisphosphate, or phosphatidic acid. Further studies indicate that epinephrine produces changes in formation or turnover of several classes of membrane phospholipids in MDCK cells. We conclude that alpha 1-adrenergic receptors in MDCK cells appear to regulate phospholipid metabolism by the parallel activation of phospholipase C and phospholipase A2. This parallel activation of phospholipases contrasts with models described in other systems which imply sequential activation of phospholipase C and diacylglycerol lipase or phospholipase A2.  相似文献   

7.
Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both of these reactions.  相似文献   

8.
Washed human platelets prelabeled with [14C]arachidonic acid and then exposed to the Ca2+ ionophore A23187 mobilized [14C]arachidonic acid from phospholipids and formed 14C-labeled thromboxane B2, 12-hydroxy-5-8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid. Addition of phorbol myristate acetate (PMA) by itself at concentrations from 10 to 1000 ng/ml did not release arachidonic acid or cause the formation of any of its metabolites, nor did it affect the metabolism of exogenously added arachidonic acid. When 1 microM A23187 was added to platelets pretreated with 100 ng of PMA/ml for 10 min, the release of arachidonic acid, and the amount of all arachidonic acid metabolites formed, were greatly increased (average 4.1 +/- 0.5-fold in eight experiments). This effect of PMA was mimicked by other stimulators of protein kinase C, such as phorbol dibutyrate and oleoyl acetoyl glycerol, but not by 4-alpha-phorbol 12,13-didecanoate, which does not stimulate protein kinase C. However, phosphorylation of the cytosolic 47-kDa protein, the major substrate for protein kinase C in platelets, was produced at lower concentrations of PMA and at a much higher rate than enhancement of arachidonic acid release by PMA, suggesting that 47-kDa protein phosphorylation is not directly involved in mobilization of the fatty acid. PMA also potentiated arachidonic acid release when stimulation of phospholipase C by the ionophore (which is due to thromboxane A2 and/or secreted ADP) was blocked by aspirin plus ADP scavengers, i.e. apyrase or creatine phosphate/creatine phosphokinase. Increased release of arachidonic acid was attributable to loss of [14C]arachidonic acid primarily from phosphatidylcholine (79%) with lesser amounts derived from phosphatidylinositol (12%) and phosphatidylethanolamine (8%). Phosphatidic acid, whose production is a sensitive indicator of phospholipase C activation, was not formed. Thus, the potentiation of arachidonic acid release by PMA appeared to be due to phospholipase A2 activity. These results suggest that diacylglycerol formed in response to stimulation of platelet receptors by agonists may cooperatively promote release of arachidonic acid via a Ca2+/phospholipase A2-dependent pathway.  相似文献   

9.
Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [3H]glycerol or [3H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [3H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [3H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.  相似文献   

10.
The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of 3H-labeled and 14C-labeled metabolites of phosphatidyl-[3H]inositol ([3H]Ins-PI) and 1-stearoyl-2-[14C] arachidonoyl-PI were determined at 37 degrees C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca2+. The rates of formation of lysophosphatidyl-[3H]inositol ([3H]Ins-lyso-PI) and 1-lyso-2-[14C] arachidonoyl-PI were similar in the presence and absence of Ca2+, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, [14C]arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI paralleled release of glycerophospho-[3H]inositol ([3H]GPI) from [3H]Ins-PI. Formation of [3H]GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in [3H]Ins-lyso-PI. In the presence of Ca2+, [14C] arachidonic acid release from 1-stearoyl-2-[14C]arachidonoyl-PI was increased 2-fold and was associated with Ca2+-dependent phospholipase C activity. Under these conditions, [3H]inositol monophosphate production exceeded formation of [14C]arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of [14C]arachidonic acid formed in excess of [3H]GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca2+-dependent [14C]arachidonic acid release, and the decrease in [14C] arachidonic acid formed was matched by an equivalent increase in 14C label in diacylglycerol plus monoacyclglycerol. These data supported the existence of two pathways for arachidonic acid release from PI in endothelial cells; a phospholipase A1-lysophospholipase pathway that was Ca2+-independent and a phospholipase C-diacylglycerol lipase pathway that was Ca2+-dependent. The mean percentage of arachidonic acid released from PI via the phospholipase C-diacylglycerol lipase pathway in the presence of Ca2+ was 65 +/- 8%. The mean percentage of nonpolar phospholipase C products of PI metabolized via the diacylglycerol lipase pathway to free arachidonic acid was 28 +/- 3%.  相似文献   

11.
In a previous study, we have shown that endothelin-1 (ET-1) activates phospholipase D independently from protein kinase C in osteoblast-like MC3T3-E1 cells. It is well recognized that phosphatidylycholine hydrolysis by phospholipase D generates phosphatidic acid, which can be further degraded by phosphatidic acid phosphohydrolase to diacylglycerol. In the present study, we investigated the role of phospholipase D activation in ET-1-induced arachidonic acid release and prostaglandin E2 (PGE2) synthesis in osteoblast-like MC3T3-E1 cells. ET-1 stimulated arachidonic acid release dose-dependently in the range between 0.1 nM and 0.1 μM. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, significantly inhibited the ET-1-induced arachidonic acid release in a dose-dependent manner as well as the ET-1-induced diacylglycerol formation. 1,6-bis-(cyclohexyloxyminocarbonylamino)-hexane (RHC-80267), an inhibitor of diacylglycerol lipase, significantly suppressed the ET-1-induced arachidonic acid release. The pretreatment with propranolol and RHC-80267 also inhibited the ET-1-induced PGE2 synthesis. These results strongly suggest that phosphatidylcholine hydrolysis by phospholipase D is involved in the arachidonic acid release induced by ET-1 in osteoblast-like cells. J. Cell. Biochem. 64:376–381. © 1997 Wiley-Liss, Inc.  相似文献   

12.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Phosphatidylcholine is the principal phospholipid in mammalian tissues, and a major source for the production of arachidonic acid. In this study, the effect of exogenous phosphocholine, a precursor of phosphatidylcholine biosynthesis, on the metabolism of phosphatidylcholine in human umbilical vein endothelial cells was investigated. Incubation of endothelial cells with exogenous phosphocholine at concentrations of 1 to 5 mM was found to inhibit choline uptake and its subsequent incorporation into phosphatidylcholine. Phosphocholine appeared to inhibit choline uptake in a competitive manner. Since phosphatidylcholine is metabolized mainly by the action of phospholipase A2, with the release of arachidonic acid and other fatty acids, the effect of phosphocholine on arachidonic acid release in endothelial cells was also examined. The induction of arachidonic acid release by ATP was enhanced in cells treated with 1 mM phosphocholine. In vitro assays of phospholipase A2 activity in cells incubated with phosphocholine, however, did not produced any significant change in the activity of this enzyme. The results of this study show that phosphocholine modulates the biosynthesis and catabolism of phosphatidylcholine in an indirect manner.  相似文献   

14.
The diacylglycerol lipase inhibitor, RHC 80267, 1,6-di(O-(carbamoyl)cyclohexanone oxime)hexane, was tested for its ability to block the release of arachidonic acid from human platelets. At a concentration (10 microM) reported to completely inhibit diacylglycerol lipase in fractions of broken platelets, RHC 80267 had no effect on diacylglycerol lipase activity or the release of arachidonic acid from washed human platelets stimulated with collagen. At a high concentration (250 microM), the compound inhibited the formation of arachidonyl-monoacylglycerol by 70% and the release of arachidonate by 60%. However, at this concentration RHC 80267 was found to inhibit cyclooxygenase activity, phospholipase C activity and the hydrolysis of phosphatidylcholine (PC) (presumably by inhibiting phospholipase A2). The phospholipase C inhibition was attributed to the inhibition of prostaglandin H2 formation, as it was alleviated by the addition of the endoperoxide analog, U-46619. PC hydrolysis was only partially restored with U-46619, suggesting that RHC 80267 directly alters phospholipase A2 activity. The inhibition of arachidonate release observed was accounted for by the inhibition of PC hydrolysis. We conclude that RHC 80267, because of its lack of specificity at concentrations needed to inhibit diacylglycerol lipase, is an unsuitable inhibitor for studying the release of arachidonic acid in intact human platelets.  相似文献   

15.
Agonist-induced degradation of phosphatidylcholine (PC) is of interest as this pathway of diacylglycerol (DG) generation may provide added opportunities for the regulation of protein kinase C (PKC). In REF52 cells [3H]myristic acid is preferentially incorporated into PC; this, coupled with the use of [3H]choline, allows for quantitation of both the water-soluble and the lipid products generated when PC is degraded. In cells prelabeled with [3H]choline, TPA stimulated a time-dependent release, into the medium, of choline and not phosphocholine or glycerophosphocholine. Treatment of [3H]myristic acid-labeled cells with either phorbol diesters, sn-1,2-dioctanoylglycerol, or vasopressin elicited the formation of labeled phosphatidate (PA) and DG. The temporal pattern of PC hydrolysis in cells treated with TPA is indicative of a precursor (PA)-product (DG) relationship for an enzymatic sequence initiated by phospholipase D. Adding propranolol, a phosphatidate phosphohydrolase inhibitor, eliminated TPA-induced DG formation, whereas PA generation was unaffected. From these data we conclude that TPA elicits DG formation from PC by the sequential actions of phospholipase D and phosphatidate phosphohydrolase.  相似文献   

16.
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.  相似文献   

17.
Cross-linking of IgE receptors by antigen stimulation leads to histamine release and arachidonic acid release in rat peritoneal mast cells. Investigators have reported a diverse distribution of [3H]arachidonate that is dependent on labelling conditions. Mast cells from rat peritoneal cavity were labelled with [3H]arachidonic acid for different periods of time at either 30 or 37 degrees C. Optimum labelling was found to be after 4 h incubation with [3H]arachidonate at 30 degrees C, as judged by cell viability (Trypan Blue uptake), responsiveness (histamine release) and distribution of radioactivity. Alterations in 3H-radioactivity distribution in mast cells labelled to equilibrium were examined on stimulation with antigen (2,4-dinitrophenyl-conjugated Ascaris suum extract). The results indicated that [3H]arachidonic acid was lost mainly from phosphatidylcholine and, to a lesser extent, from phosphatidylinositol. A transient appearance of radiolabelled phosphatidic acid and diacylglycerol indicated phosphatidylinositol hydrolysis by phospholipase C. Pretreatment with a phospholipase A2 inhibitor, mepacrine, substantially prevented the antigen-induced liberation of [3H]arachidonic acid from phosphatidylcholine. It can be thus concluded that, in the release of arachidonic acid by antigen-stimulated mast cells, the phospholipase A2 pathway, in which phosphatidylcholine is hydrolysed, serves as the major one, the phospholipase C/diacylglycerol lipase pathway playing only a minor role.  相似文献   

18.
The alpha 1-adrenergic receptor has been shown to mediate the release of arachidonic acid in FRTL5 thyroid cells and MDCK kidney cells. In primary cultures of spinal cord cells, norepinephrine stimulated release of arachidonic acid (from neurons only) and turnover of inositol phospholipids (from neurons and glia) via alpha 1-adrenergic receptors. These two responses were dissociated by treatment with phorbol ester and pertussis toxin, which inhibited production of inositol phosphates with no appreciable effect on release of arachidonic acid. Extracellular calcium was required for release of arachidonic acid, but not for production of inositol phosphates. The calcium channel blockers nifedipine and verapamil inhibited release of arachidonic acid only. However, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), a compound that blocks intracellular calcium release, diminished production of inositol phosphates, but had little effect on release of arachidonic acid. These results suggest that alpha 1-adrenergic receptors couple to release of arachidonic acid in primary cultures of spinal cord cells by a mechanism independent of activation of phospholipase C, possibly via the activation of phospholipase A2.  相似文献   

19.
Prolonged exposure of Swiss 3T3 cells to vasopressin causes heterologous mitogenic desensitization to bombesin and structurally related peptides including gastrin-releasing peptide (GRP) without down-regulation of the bombesin receptor. The number and affinity of bombesin/GRP receptor sites and modulation of 125I-GRP binding by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) are unaffected in membrane preparations from vasopressin-treated cultures. Stimulation of inositol phosphate accumulation, mobilization of intracellular calcium, production of diacylglycerol, and transmodulation of the epidermal growth factor receptor by bombesin are similarly unaffected. Thus, the heterologous mitogenic desensitization is not due to uncoupling of bombesin receptor from transducing G protein(s) or to an inability to activate phospholipase C. Bombesin, unlike vasopressin, causes a rapid dose-dependent release of [3H]arachidonic acid and prostaglandin E2 from Swiss 3T3 cells (EC50 approximately 4 nM), which is inhibited by the specific bombesin receptor antagonist [Leu13-psi(CH2NH)-Leu14]bombesin. Crucially, release of [3H]arachidonic acid and prostaglandin E2 by bombesin is completely suppressed by prolonged pretreatment with vasopressin (EC50 = 0.6 nM). The mitogenic action of bombesin is restored by adding arachidonic acid to vasopressin-treated cells. We conclude first that arachidonic acid release is an early signal in the mitogenic response to bombesin and second that pretreatment with vasopressin induces heterologous mitogenic desensitization to bombesin by a novel mechanism: inhibition of arachidonic acid release.  相似文献   

20.
We have used platelets permeabilized with saponin to examine the mechanism by which platelet activation causes the exposure of surface receptors for fibrinogen. Receptor exposure was detected using 125I-fibrinogen and 125I-PAC1, a monoclonal antibody specific for the activated form of the fibrinogen receptor. The potential mediators that were studied included guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and guanosine 5'O-(thiotriphosphate) (GTP gamma S), which cause G protein-dependent phospholipase C activation in platelets; inositol 1,4,5-triphosphate (IP3), which causes Ca2+ release from the platelet dense tubular system; and diacylglycerol and phorbol ester, which activate protein kinase C. Each of these molecules caused fibrinogen and PAC1 binding. The effect of IP3 was mimicked by raising the cytosolic free Ca2+ concentration in the permeabilized platelets. However, IP3 and Ca2+-induced PAC1 binding were abolished by indomethacin or aspirin, which had no effect on PAC1 binding caused by Gpp(NH)p, phorbol ester, or diacylglycerol. This suggests that the response to IP3 and Ca2+ is due to the formation of metabolites of arachidonic acid. One such metabolite, TxA2, is believed to activate platelets by stimulating G protein-dependent phosphoinositide hydrolysis. Indeed, we found that the G protein inhibitor guanyl-5'-yl thiophosphate (GDP beta S) inhibited PAC1 binding caused by a thromboxane A2 analog (U46619), IP3, and Ca2+, but had no effect on diacylglycerol or phorbol ester-induced PAC1 binding. Thrombin-induced PAC1 binding and phosphoinositide hydrolysis were also inhibited by GDP beta S and by pertussis toxin. Increasing the thrombin concentration overcame the inhibition of PAC1 binding caused by GDP beta S but did not overcome the inhibition of phosphoinositide hydrolysis. These observations demonstrate that fibrinogen receptor exposure occurs by at least two routes. One of these, in response to agonists such as thrombin and U46619, is initiated by G protein-dependent phosphoinositide hydrolysis and involves the formation of IP3 and diacylglycerol. IP3 appears to act by stimulating Ca2+-dependent arachidonic acid metabolism which, in turn, triggers further phosphoinositide hydrolysis. Diacylglycerol acts by stimulating protein kinase C. A second route is activated by high concentrations of thrombin and is independent of phosphoinositide hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号