首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (Na+ + K+)-activated ATPase catalyzes the K+-activated hydrolysis of 3-O-methylfluorescein phosphate (3OMFP) with a Km of 50 microM, nearly two orders of magnitude lower than the Km for nitrophenyl phosphate, 3 mM. Both ATP and nitrophenyl phosphate are competitors toward 3OMFP with Ki values corresponding to their Km values (for ATP that at the low-affinity sites of the E2 conformation). Enzyme treated with fluorescein isothiocyanate (FITC) such that 60% of the (Na+ + K+)-ATPase activity is lost still hydrolyzes both 3OMFP and nitrophenyl phosphate: the apparent Km values are increased less than 2-fold and the Vmax is unaffected. ATP still inhibits these K+-phosphatase reactions of the FITC-treated enzyme, and this inhibition can exceed the 40% of residual (Na+ + K+)-ATPase activity. Evaluation of a kinetic model indicates that the Ki for ATP is increased about an order of magnitude by FITC-binding. Similar results obtain with trinitrophenyl-ATP (TNP-ATP) as inhibitor, in this case with Ki values in the micromolar range. Finally, FITC treatment increases K+-activated ADPase activity. These observations are interpreted as the fluorescein ring of 3OMFP binding to the adenine pocket of the substrate site, thereby conferring high affinity, just as the fluorescein ring of FITC binding to the adenine pocket in the E1 conformation permits specific linkage of the isothiocyanate chain to a particular lysine, Lys-501. Then, coincident with the transition to the E2 conformation, which bears the low-affinity site for ATP and which catalyzes the K+-phosphatase reaction, the FITC molecule tethered to Lys-501 is pulled from the adenine pocket: allowing 3OMFP and ADP to bind as substrates and ATP and TNP-ATP as inhibitors, albeit in altered conformation. The E1 to E2 transition thus involves not only a change from high to low affinity for ATP, but also a distortion of the adenine pocket and the orientation between Lys-501 and Asp-369, the residue associated with catalysis.  相似文献   

2.
he secondary structure of membrane proteins was studied in rat heart sarcolemma by circular dichroism under conditions of interaction with metallic cofactors of (Na+ + K+)-ATPase at their optimal concentrations and under metal free conditions. Approximately 80 per cent of polypeptide chains in the membrane were organized in alpha-helical structure. Upon stabilizing the E1. Na conformation state of (Na+ + K+)-ATPase by Mg2+ and Na+ ions, only a slight increase in the protein alpha-helix content (to 83 per cent) was observed. On the other hand, simultaneous addition of Mg2+ and K+ ions resulting in the establishment of the E2 . K conformational state of the enzyme, was followed by a significant decrease in the membrane protein helicity (to 72 per cent). The presence of all three metallic cofactors of (Na+ + K+)-ATPase did not induce any further conformational change in sarcolemmal proteins as compared to the state induced by the interaction with Mg2+ and Na+ ions. In contrast to results obtained with Mg2+ ions, the interaction of Na+ with the sarcolemmal membranes led to a considerable decrease and that of K+ to a significant increase in alpha-helicity of the membrane polypeptides. These findings have confirmed the regulatory role of magnesium in transition of the conformational state from E1 to E2 in the reaction sequence of (Na+ + K+)-ATPase. Specific modulation by Na+ and K+ of the helicity of sarcolemmal proteins in the presence of Mg2+ and in the absence of ATP might be considered as a preprint of conformational changes which will occur in the presence of ATP.  相似文献   

3.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

4.
We have shown previously that the canine kidney Na+,K+ pump [Na+ + K+)-ATPase) reacts with the ATP affinity analog p-fluorosulfonylbenzoyladenosine (FSBA). At 20 degrees C, we find the time-course of this reaction to be that predicted for a first-order reaction accompanied by competing solvolysis of the reagent. The FSBA-inactivated (Na+ + K+)-ATPase retains the ability to move between the E1 and E2 conformations that predominate in Na+ and K+ medium, respectively. Therefore, FSBA reaction with the enzyme does not interfere significantly with either its alkali metal cation binding or its conformational freedom. The ability of ATP to influence the enzyme's conformation by binding to the high-affinity nucleotide site is decreased, however, in proportion to the degree of inhibition of enzyme activity by FSBA. In addition, the ability of the enzyme to shift from the E1 to the E2 conformation through the (ATP + Na+)-dependent phosphorylation cycle is inhibited by FSBA treatment, as shown by the decreased ability of these substrates to stimulate the K+-dependent p-nitrophenylphosphatase activity. Both of these effects are consistent with specific reaction of FSBA with the ATP binding site of the enzyme. An additional effect of FSBA treatment is that it causes loss of p-nitrophenylphosphatase activity, but to a lesser extent than (Na+ + K+)-ATPase or Na+-ATPase activity. Binding of p-nitrophenylphosphate to the enzyme is apparently unaffected by FSBA treatment, since the Km for p-nitrophenylphosphate is not changed.  相似文献   

5.
1. The protein fluorescence intensity of (Na+ + K+)-ATPase is enhanced following binding of K+ at low concentrations. The properties of the response suggest that one or a few tryptophan residues are affected by a conformational transition between the K-bound form E2 . (K) and a Na-bound form E1 . Na. 2. The rate of the conformational transition E2 . (K) leads to E . Na has been measured with a stopped-flow fluorimeter by exploiting the difference in fluorescence of the two states. In the absence of ATP the rate is very slow, but it is greatly accelerated by binding of ATP to a low affinity site. 3. Transient changes in tryptophan fluorescence accompany hydrolysis of ATP at low concentrations, in media containing Mg2+, Na+ and K+. The fluorescence response reflects interconversion between the initial enzyme conformation, E1 . Na and the steady-state turnover intermediate E2 . (K). 4. The phosphorylated intermediate, E2P can be detected by a fluorescence increase accompanying hydrolysis of ATP in media containing Mg2+ and Na+ but no K+. 5. The conformational states and reaction mechanism of the (Na+ + K+)-ATPase are discussed in the light of this work. The results permit a comparison of the behaviour of the enzyme at both low and high nucleotide concentrations.  相似文献   

6.
K Y Xu 《Biochemistry》1989,28(17):6894-6899
A combination of competitive labeling with [3H]acetic anhydride [Kaplan, H., Stevenson, K. J., & Hartley, B. S. (1971) Biochem. J. 124, 289-299] and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein.  相似文献   

7.
1. The K+-nitrophenylphosphatase activity associated with mammalian brain (Na+ + K+)-ATPase displays K+ activation curves that have intermediary plateaus and maxima in the presence of less than saturating concentrations of Na+. Zero Na+ and saturating Na+ produce sigmoid K+-activation curves with low and high K+ affinities respectively. 2. ATP inhibits K+-activated nitrophenylphosphatase through both competitive and non-competitive mechanisms. ATP is synergistic with Na+ in the mechanism which converts the enzyme from low to high K+ affinity. 3. The Na+ and K+ interactions can be accounted for by equations which describe a model with separate regulatory sites for Na+ and K+ and with K+- requiring catalytic site which is only accessible in one of the two principal conformational stages of the enzyme. 4. The effects of ATP can be accounted for by the same model through interactions at a single nucleotide binding site. Inhibition which is competitive with K+ and non-competitive with substrate arises from stabilization of the inactive enzyme conformation. Inhibition which is non-competitive with K+ and competitive with substrate results from interactions with the active enzyme conformation. The synergism between Na+ and ATP appears to arise as a consequence of the formation of phosphoryl enzyme. 5. A model for (Na+ + K+)-ATPase is discussed which involves in-phase coupling of subunit interactions as suggested by these studies.  相似文献   

8.
The fluorescent sulfhydryl reagent S-mercuric-N-dansyl cysteine (Dn-Cys-Hg+) has been used to label a purified preparation of the (Na+ + K+)-ATPase obtained from the electric organ of Electrophorous electricus. The labelled (Na+ +K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3), although reversibly inhibited, was capable of undergoing conformational changes associated with the active enzyme that could be monitored fluorometrically. The presence of ligands (Na+ + Mg2+ + ATP or Mg2+ + Pi) which are known to convert the enzyme from the E-1 state to the E-2-P state brought about large (97--100%) increases in fluorescence of the dimethylaminonaphthalene sulfonyl (Dn) label. An E-2 state could be achieved by the addition of Mg2+ which caused only a 32.3% increase in fluorescence over the E-1 state. Neither AMP nor TTP with or without Mg2+ or Na+ or Pi added without Mg2+ had any effect on the Dn fluorescence. If the enzyme was denatured, no fluorescence changes were observed. Small changes in the polarization of fluorescence of the Dn moiety were observed under all the conditions used. These small polarization changes and the large increases in the fluorescence intensity suggest that the enzyme can change conformational states in the presence of appropriate ligands and these conformational changes may take place in a relatively limited region of the protein's structure.  相似文献   

9.
In experiments performed at 37 degrees C, Ca2+ reversibly inhibits the Na+-and (Na+ + K+)-ATPase activities and the K+-dependent phosphatase activity of (Na+ + K+)-ATPase. With 3 mM ATP, the Na+-ATPase was less sensitive to CaCl2 than the (Na+ + K+)-ATPase activity. With 0.02 mM ATP, the Na+-ATPase and the (Na+ + K+)-ATPase activities were similarly inhibited by CaCl2. The K0.5 for Ca2+ as (Na+ + K+)-ATPase inhibitor depended on the total MgCl2 and ATP concentrations. This Ca2+ inhibition could be a consequence of Ca2+-Mg2+ competition, Ca . ATP-Mg . ATP competition or a combination of both mechanisms. In the presence of Na+ and Mg2+, Ca2+ inhibited the K+-dependent dephosphorylation of the phosphoenzyme formed from ATP, had no effect on the dephosphorylation in the absence of K+ and inhibited the rephosphorylation of the enzyme. In addition, the steady-state levels of phosphoenzyme were reduced in the presence both of NaCl and of NaCl plus KCl. With 3 mM ATP, Ca2+ alone sustained no more than 2% of the (Na+ + K+)-ATPase activity and about 23% of the Na+-ATPase activity observed with Mg2+ and no Ca2+. With 0.003 mM ATP, Ca2+ was able to maintain about 40% of the (Na+ + K+)-ATPase activity and 27% of the Na+-ATPase activity seen in the presence of Mg2+ alone. However, the E2(K)-E1K conformational change did not seem to be affected. Ca2+ inhibition of the K+-dependent rho-nitrophenylphosphatase activity of the (Na+ + K+)-ATPase followed competition kinetics between Ca2+ and Mg2+. In the presence of 10 mM NaCl and 0.75 mM KCl, the fractional inhibition of the K+-dependent rho-nitrophenylphosphatase activity as a function of Ca2+ concentration was the same with and without ATP, suggesting that Ca2+ indeed plays the important role in this process. In the absence of Mg2+, Ca2+ was unable to sustain any detectable ouabain-sensitive phosphatase activity, either with rho-nitrophenylphosphate or with acetyl phosphate as substrate.  相似文献   

10.
Phosphorylation was shown to lead to a change in the conformational equilibrium toward E1 form associated with a decrease in apparent affinity for the K+ in alpha-1 subunit of the rat kidney Na+, K(+)-ATPase. Rate of transition from E2 to E1 was apparently unaffected by phosphorylation. ATP hydrolysis by the protein kinase C-phosphorylated Na+, K(+)-ATPase shows a decrease in the Vmax and Km for K+.  相似文献   

11.
To investigate the relationship between the high and the low affinity ATP-binding site, which appears during the Na(+)/K(+)-ATPase reaction, four amino acids were mutated, the side chains of which are exposed to inside of the ATP-binding pocket. Six mutants, F475Y, K480A, K480E, K501A, K501E, and R544A, where the numbers correspond to the pig Na(+)/K(+)-ATPase alpha-chain, were expressed in HeLa cells. The apparent affinities were determined by high affinity ATP-dependent phosphorylation and by the low affinity activation of Na(+)/K(+)-ATPase or low affinity ATP inhibition of K(+)-para-nitrophenylphosphatase (pNPPase). For the mutants K480A and K501A, little affinity change was detected for either the high affinity or the low affinity effect. In contrast, the other four mutants reduced both apparent affinities. Strikingly, R544A had a 30-fold greater effect on the high affinity ATP site than the low affinity site. For the F475Y mutant, it is likely that there was a greater effect on the low affinity site than the high affinity site, but for both F475Y and K480E the affinity for the low affinity ATP effect was reduced so much that it was not possible to estimate a K(0.5). However, both the affinities for the K480E were reduced to approximately 1/20. The turnover number of the Na(+)/K(+)-ATPase and the apparent affinity for Na(+) and pNPP was reduced slightly or not at all for these mutants, but the turnover number of K(+)-pNPPase and the apparent affinity for K(+) were increased. These and other data suggest the presence of only one ATP-binding site, which can change its conformation to accept ATP with a high and low affinity. The requirement of Arg-544 and possibly Lys-501 is more important in forming a high affinity ATP binding conformation, and Phe-475 and possibly Lys-480 are more important in forming the low affinity ATP binding conformation.  相似文献   

12.
Halenaquinol inhibited the partial reactions of ATP hydrolysis by rat brain cortex Na(+),K(+)-ATPase, such as [3H]ATP binding to the enzyme, Na(+)-dependent front-door phosphorylation from [gamma-(33)P]ATP, and also Na(+)- and K(+)-dependent E(1)<-->E(2) conformational transitions of the enzyme. Halenaquinol abolished the positive cooperativity between the Na(+)- and K(+)-binding sites on the enzyme. ATP and sulfhydryl-containing reagents (cysteine and dithiothreitol) protected the Na(+),K(+)-ATPase against inhibition. Halenaquinol can react with additional vital groups in the enzyme after blockage of certain sulfhydryl groups with 5,5'-dithio-bis-nitrobenzoic acid. Halenaquinol inhibited [3H]ouabain binding to Na(+),K(+)-ATPase under phosphorylating and non-phosphorylating conditions. Binding of fluorescein 5'-isothiocyanate to Na(+),K(+)-ATPase and intensity of fluorescence of enzyme tryptophanyl residues were decreased by halenaquinol. We suggest that interaction of halenaquinol with the essential sulfhydryls in/or near the ATP-binding site of Na(+),K(+)-ATPase resulted in a change of protein conformation and subsequent alteration of overall and partial enzymatic reactions.  相似文献   

13.
Kinetic properties of C12E8-solubilized (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
The properties of the rectal gland (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.8) solubilized in octaethyleneglycol dodecylmonoether ( C12E8 ) have been investigated. The kinetic properties of the solubilized enzyme resemble those of the membrane-bound enzyme to a large extent. The main difference is that Km for ATP for the (Na+ + K+)-ATPase is about 30 microM for the solubilized enzyme and about 100 microM for the membrane-bound enzyme. The Na+-form (E1) and the K+-form (E2) can also be distinguished in the solubilized enzyme, as seen from tryptic digestion, the intrinsic fluorescence and eosin fluorescence responses to Na+ and K+. The number of vanadate-binding sites is unchanged upon solubilization, and it is shown that vanadate binding is much more resistant to detergent inactivation than the enzymatic activities. The number of phosphorylation sites on the 95-100% pure supernatant enzyme is about 3.8 nmol/mg, and is equal to the number of vanadate sites. Inactivation of the enzyme by high concentrations of detergent can be shown to be related to the C12E8 /protein ratio, with a weight ratio of about 4 being a threshold for the onset of inactivation at low ionic strength. At high ionic strength, more C12E8 is required both for solubilization and inactivation. It is observed that the commercially available detergent polyoxyethylene 10-lauryl ether is much less deleterious than C12E8 , and its advantages in the assay of detergent-solubilized (Na+ + K+)-ATPase are discussed. The results show that (Na+ + K+)-ATPase can be solubilized in C12E8 in an active form, and that most of the kinetic and conformational properties of the membrane-bound enzyme are conserved upon solubilization. C12E8 -solubilized (Na+ + K+)-ATPase is therefore a good model system for a solubilized membrane protein.  相似文献   

14.
To delineate better the reaction sequence of the (Na+ + K+)-ATPase and illuminate properties of the active site, kinetic data were fitted to specific quantitative models. For the (Na+ + K+)-ATPase reaction, double-reciprocal plots of velocity against ATP (in the millimolar range), with a series of fixed KCl concentrations, are nearly parallel, in accord with the ping pong kinetics of ATP binding at the low-affinity sites only after Pi release. However, contrary to requirements of usual formulations, Pi is not a competitor toward ATP. A new steady-state kinetic model accommodates these data quantitatively, requiring that under usual assay conditions most of the enzyme activity follows a sequence in which ATP adds after Pi release, but also requiring a minor alternative pathway with ATP adding after K+ binds but before Pi release. The fit to the data also reveals that Pi binds nearly as rapidly to E2 X K X ATP as to E2 X K, whereas ATP binds quite slowly to E2 X P X K: the site resembles a cul-de-sac with distal ATP and proximal Pi sites. For the K+-nitrophenyl phosphatase reaction also catalyzed by this enzyme, the apparent affinities for both substrate and Pi (as inhibitor) decrease with higher KCl concentrations, and both Pi and TNP-ATP appear to be competitive inhibitors toward substrate with 10 mM KCl but noncompetitive inhibitors with 1 mM KCl. These data are accommodated quantitatively by a steady-state model allowing cyclic hydrolytic activity without obligatory release of K+, and with exclusive binding of substrate vs. either Pi or TNP-ATP. The greater sensitivity of the phosphatase reaction to both Pi and arsenate is attributable to the weaker binding by the occluded-K+ enzyme form occurring in the (Na+ + K+)-ATPase reaction sequence. The steady-state models are consistent with cyclical interconversion of high- and low-affinity substrate sites accompanying E1/E2 transitions, with distortion to low-affinity sites altering not only affinity and route of access but also separating the adenine- and phosphate-binding regions, the latter serving in the E2 conformation as the active site for the phosphatase reaction.  相似文献   

15.
K Y Xu 《Biochemistry》1989,28(14):5764-5772
Determinations of reaction stoichiometry demonstrate that the covalent incorporation of one molecule of 5'-isothiocyanatofluorescein can inactivate one molecule of sodium and potassium ion activated adenosinetriphosphatase in agreement with earlier determination of this stoichiometry. Several different modified peptides are produced, however, when the modified enzyme is digested with trypsin. One of these peptides has been identified as HLLVMK (thioureidylfluorescein)GAPER by use of a specific immunoadsorbent. The modified lysine is lysine 501 in the amino acid sequence of the alpha polypeptide of (Na+ + K+)-ATPase. This peptide has been previously isolated from such digests [Farley, R. A., Tran, C. M., Carilli, C. T., Hawke, D., & Shively, J. E. (1984) J. Biol. Chem. 259, 9532-9535]. The other specifically modified peptides have been purified and identified by amino acid sequencing. Their sequences identify lysine 480 and lysine 766 from the alpha polypeptide as amino acids modified by 5'-isothiocyanatofluorescein in reactions sensitive to the addition of ATP and responsible for inactivation of the enzyme.  相似文献   

16.
1. The 3'-ribosyl ester of ATP with 2-nitro-4-azidophenyl propionic acid has been prepared and its ability to act as a photoaffinity label of (Na+ + K+)-ATPase has been tested. 2. In the dark 3'-O-[3-(2-nitro-4-azidophenyl)-propionyl]adenosine triphosphate (N3-ATP) is a substrate of (Na+ + K+)-ATPase and a competitive inhibitor of ATP hydrolysis. 3. Upon irradiation by ultraviolet light, N3-ATP photolabels the high-affinity ATP-binding site and is covalently attached to the alpha-subunit and an approximately 12000-Mr component. 4. Photolabeling of the alpha-subunit by N3-ATP irreversibly inactivates (Na+ + K+)-ATPase. 5. Photoinactivation is strictly Mg2+-dependent. Na+ enhances the inactivation. ATP or ADP and K+ protect the enzyme against inactivation. 6. Mg2+, in concentrations required for photoinactivation, protects (Na+ + K+)-ATPase against inactivation by tryptic digestion under controlled conditions. 7. It is assumed that a conformational change of the ATP-binding site of (Na+ + K+)-ATPase occurs upon binding of Mg2+ to a low-affinity site.  相似文献   

17.
F R Gorga 《Biochemistry》1985,24(24):6783-6788
N,N'-Dicyclohexylcarbodiimide (DCCD), a reagent that reacts with carboxyl groups under mild conditions, irreversibly inhibits (Na+,K+)-ATPase activity (measured by using 1 mM ATP) with a pseudo-first-order rate constant of 0.084 min-1 (0.25 mM DCCD and 37 degrees C). The partial activities of the enzyme, including (Na+,K+)-ATPase at 1 microM ATP, Na+-ATPase, and the formation of enzyme-acyl phosphate (E-P), decayed at about one-third the rate at which (Na+,K+)-ATPase at 1 mM ATP was lost. The formation of E-P from inorganic phosphate was unaffected by DCCD while K+-phosphatase activity decayed at the same rate as (Na+,K+)-ATPase measured at 1 mM ATP. The enzyme's substrates (i.e., sodium, potassium, magnesium, and ATP) all decreased the rate of DCCD inactivation of (Na+,K+)-ATPase activity measured at either 1 mM or 1 microM ATP. The concentration dependence of the protection afforded by each substrate is consistent with its binding at a catalytically relevant site. DCCD also causes cross-linking of the enzyme into species of very high molecular weight. This process occurs at about one-tenth the rate at which (Na+,K+)-ATPase activity measured at 1 mM ATP is lost, too slowly to be related to the loss of enzymatic activity. Labeling of the enzyme with [14C]DCCD shows the incorporation of approximately 1 mol of DCCD per mole of large subunit; however, the incorporation is independent of the loss of enzymatic activity. The results presented here suggest that (Na+,K+)-ATPase contains two carboxyl groups that are essential for catalytic activity, in addition to the previously known aspartate residue which is involved in formation of E-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

19.
Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the conformational transitions between E(1) and E(2) forms of dephospho- and phosphoenzyme, (ii) Na(+) binding at the cytoplasmically facing sites of E(1), and (iii) long-range interaction controlling dephosphorylation. In mutants Glu(282) --> Lys and Glu(282) --> Asp, the E(1) form was favored during ATP hydrolysis, whereas the E(2) form was favored in Glu(282) --> Ala and Glu(282) --> Gly. Regardless of the change of conformational equilibrium, all the mutants displayed a reduced apparent affinity for Na(+), at least 3-fold for Glu(282) --> Lys and Glu(282) --> Asp, suggesting a direct effect on the Na(+) binding properties of E(1). Glu(282) --> Ala and Glu(282) --> Gly exhibited an extraordinary high rate of ATP hydrolysis in the mere presence of Na(+) without K(+) ("Na(+)-ATPase activity"), because of an increased rate of dephosphorylation of E(2)P. These results are in accordance with the hypothesis that Glu(282) is involved in the communication between the cation binding pocket and the catalytic site and in control of the cytoplasmic entry pathway for Na(+).  相似文献   

20.
Soluble (Na+ + K+)-ATPase consisting predominantly of alpha beta-units with Mr below 170 000 was prepared by incubating pure membrane-bound (Na+ + K+)-ATPase (35-48 mumol Pi/min per mg protein) from the outer renal medulla with the non-ionic detergent dodecyloctaethyleneglycol monoether (C12E8). (Na+ + K+)-ATPase and potassium phosphatase remained fully active in the detergent solution at C12E8/protein ratios of 2.5-3, at which 50-70% of the membrane protein was solubilized. The soluble protomeric (Na+ + K+)-ATPase was reconstituted to Na+, K+ pumps in phospholipid vesicles by the freeze-thaw sonication procedure. Protein solubilization was complete at C12E8/protein ratios of 5-6, at the expense of partial inactivation, but (Na+ + K+)-ATPase and potassium phosphatase could be reactivated after binding of C12E8 to Bio-Beads SM2. At C12E8/protein ratios higher than 6 the activities were irreversibly lost. Inactivation could be explained by delipidation. It was not due to subunit dissociation since only small changes in sedimentation velocities were seen when the C12E8/protein ratio was increased from 2.9 to 46. As determined immediately after solubilization, S20,w was 7.4 S for the fully active (Na+ + K+)-ATPase, 7.3 S for the partially active particle, and 6.5 S for the inactive particle at high C12E8/protein ratios. The maximum molecular masses determined by analytical ultracentrifugation were 141 000-170 000 dalton for these protein particles. Secondary aggregation occurred during column chromatography, with formation of enzymatically active (alpha beta)2-dimers or (alpha beta)3-trimers with S20,w = 10-12 S and apparent molecular masses in the range 273 000-386 000 daltons. This may reflect non-specific time-dependent aggregation of the detergent micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号