首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in both pial arteriolar resistance (PAR) and simulated arterial-arteriolar bed resistance (SimR) of a physiologically based biomechanical model of cerebrovascular pressure transmission, the dynamic relationship between arterial blood pressure and intracranial pressure, are used to test the hypothesis that hypercapnia disrupts autoregulatory reactivity. To evaluate pressure reactivity, vasopressin-induced acute hypertension was administered to normocapnic and hypercapnic (N = 12) piglets equipped with closed cranial windows. Pial arteriolar diameters were used to compute arteriolar resistance. Percent change of PAR (%DeltaPAR) and percent change of SimR (%DeltaSimR) in response to vasopressin-induced acute hypertension were computed and compared. Hypercapnia decreased cerebrovascular resistance. Indicative of active autoregulatory reactivity, vasopressin-induced hypertensive challenge resulted in an increase of both %DeltaPAR and %DeltaSimR for all normocapnic piglets. The hypercapnic piglets formed two statistically distinct populations. One-half of the hypercapnic piglets demonstrated a measured decrease of both %DeltaPAR and %DeltaSimR to pressure challenge, indicative of being pressure passive, whereas the other one-half demonstrated an increase in these percentages, indicative of active autoregulation. No other differences in measured variables were detectable between regulating and pressure-passive piglets. Changes in resistance calculated from using the model mirrored those calculated from arteriolar diameter measurements. In conclusion, vasodilation induced by hypercapnia has the potential to disrupt autoregulatory reactivity. Our physiologically based biomechanical model of cerebrovascular pressure transmission accurately estimates the changes in arteriolar resistance during conditions of active and passive cerebrovascular reactivity.  相似文献   

2.
In humans, hypoxia leads to increased sympathetic neural outflow to skeletal muscle. However, blood flow increases in the forearm. The mechanism of hypoxia-induced vasodilation is unknown. To test whether hypoxia-induced vasodilation is cholinergically mediated or is due to local release of adenosine, normal subjects were studied before and during acute hypoxia (inspired O(2) 10.5%; approximately 20 min). In experiment I, aminophylline (50-200 microg. min(-1). 100 ml forearm tissue(-1)) was infused into the brachial artery to block adenosine receptors (n = 9). In experiment II, cholinergic vasodilation was blocked by atropine (0.4 mg over 4 min) infused into the brachial artery (n = 8). The responses of forearm blood flow (plethysmography) and forearm vascular resistance to hypoxia in the infused and opposite (control) forearms were compared. During hypoxia (arterial O(2) saturation 77 +/- 2%), minute ventilation and heart rate increased while arterial pressure remained unchanged; forearm blood flow rose by 35 +/- 6% in the control forearm but only by 5 +/- 8% in the aminophylline-treated forearm (P < 0.02). Accordingly, forearm vascular resistance decreased by 29 +/- 5% in the control forearm but only by 9 +/- 6% in the aminophylline-treated forearm (P < 0.02). Atropine did not attenuate forearm vasodilation during hypoxia. These data suggest that adenosine contributes to hypoxia-induced vasodilation, whereas cholinergic vasodilation does not play a role.  相似文献   

3.
This review focuses on two gaseous cellular messenger molecules, CO and H2S, that are involved in cerebrovascular flow regulation. CO is a dilatory mediator in active hyperemia, autoregulation, hypoxic dilation, and counteracting vasoconstriction. It is produced from heme by a constitutively expressed enzyme [heme oxygenase (HO)-2] expressed highly in the brain and by an inducible enzyme (HO-1). CO production is regulated by controlling substrate availability, HO-2 catalytic activity, and HO-1 expression. CO dilates arterioles by binding to heme that is bound to large-conductance Ca2+-activated K+ channels. This binding elevates channel Ca2+ sensitivity, that increases coupling of Ca2+ sparks to large-conductance Ca2+-activated K+ channel openings and, thereby, hyperpolarizes the vascular smooth muscle. In addition to dilating blood vessels, CO can either inhibit or accentuate vascular cell proliferation and apoptosis, depending on conditions. H2S may also function as a cerebrovascular dilator. It is produced in vascular smooth muscle cells by hydrolysis of l-cysteine catalyzed by cystathione gamma-lyase (CSE). H2S dilates arterioles at physiologically relevant concentrations via activation of ATP-sensitive K+ channels. In addition to dilating blood vessels, H2S promotes apoptosis of vascular smooth muscle cells and inhibits proliferation-associated vascular remodeling. Thus both CO and H2S modulate the function and the structure of circulatory system. Both the HO-CO and CSE-H2S systems have potential to interact with NO and prostanoids in the cerebral circulation. Much of the physiology and biochemistry of HO-CO and CSE-H2S in the cerebral circulation remains open for exploration.  相似文献   

4.
Lang, Chim C., Don B. Chomsky, Javed Butler, Shiv Kapoor,and John R. Wilson. Prostaglandin production contributes toexercise-induced vasodilation in heart failure. J. Appl. Physiol. 83(6): 1933-1940, 1997.Endothelial release of prostaglandins may contribute toexercise-induced skeletal muscle arteriolar vasodilation in patientswith heart failure. To test this hypothesis, we examined the effect ofindomethacin on leg circulation and metabolism in eight chronic heartfailure patients, aged 55 ± 4 yr. Central hemodynamics and legblood flow, determined by thermodilution, and leg metabolic parameterswere measured during maximum treadmill exercise before and 2 h afteroral administration of indomethacin (75 mg). Leg release of6-ketoprostaglandin F1 was alsomeasured. During control exercise, leg blood flow increased from 0.34 ± 0.03 to 1.99 ± 0.19 l/min(P < 0.001), legO2 consumption from 13.6 ± 1.8 to 164.5 ± 16.2 ml/min (P < 0.001), and leg prostanoid release from 54.1 ± 8.5 to267.4 ± 35.8 pg/min (P < 0.001).Indomethacin suppressed release of prostaglandinF1(P < 0.001) throughout exercise anddecreased leg blood flow during exercise(P < 0.05). This was associated witha corresponding decrease in leg O2 consumption (P < 0.05) and a higher level offemoral venous lactate at peak exercise(P < 0.01). These data suggest thatrelease of vasodilatory prostaglandins contributes to skeletal musclearteriolar vasodilation in patients with heart failure.

  相似文献   

5.
The early (approximately 30 min) postexercise hypotension response after a session of aerobic exercise is due in part to H1-receptor-mediated vasodilation. The purpose of this study was to determine the potential contribution of H2-receptor-mediated vasodilation to postexercise hypotension. We studied 10 healthy normotensive men and women (ages 23.7 +/- 3.4 yr) before and through 90 min after a 60-min bout of cycling at 60% peak O2 uptake on randomized control and H2-receptor antagonist days (300 mg oral ranitidine). Arterial pressure (automated auscultation), cardiac output (acetylene washin) and femoral blood flow (Doppler ultrasound) were measured. Vascular conductance was calculated as flow/mean arterial pressure. Sixty minutes postexercise on the control day, femoral (delta62.3 +/- 15.6%, where Delta is change; P < 0.01) and systemic (delta13.8 +/- 5.3%; P = 0.01) vascular conductances were increased, whereas mean arterial pressure was reduced (Delta-6.7 +/- 1.1 mmHg; P < 0.01). Conversely, 60 min postexercise with ranitidine, femoral (delta9.4 +/- 9.2%; P = 0.34) and systemic (delta-2.8 +/- 4.8%; P = 0.35) vascular conductances were not elevated and mean arterial pressure was not reduced (delta-2.2 +/- 1.3 mmHg; P = 0.12). Furthermore, postexercise femoral and systemic vascular conductances were lower (P < 0.05) and mean arterial pressure was higher (P = 0.01) on the ranitidine day compared with control. Ingestion of ranitidine markedly reduces vasodilation after exercise and blunts postexercise hypotension, suggesting H2-receptor-mediated vasodilation contributes to postexercise hypotension.  相似文献   

6.
As arterial partial pressure of O(2) (Pa(O(2))) is reduced during systemic hypoxia, right ventricular (RV) work and myocardial O(2) consumption (MVo(2)) increase. Mechanisms responsible for maintaining RV O(2) demand/supply balance during hypoxia have not been delineated. To address this problem, right coronary (RC) blood flow and RV O(2) extraction were measured in nine conscious, instrumented dogs exposed to normobaric hypoxia. Catheters were implanted in the right ventricle for measuring pressure, in the ascending aorta for measuring arterial pressure and for sampling arterial blood, and in an RC vein. A flow transducer was placed around the RC artery. After recovery from surgery, dogs were exposed to hypoxia in a chamber ventilated with N(2), and blood samples and hemodynamic data were collected as chamber O(2) was reduced progressively to approximately 8%. After control measurements were made, the chamber was opened and the dog was allowed to recover. N(omega)-nitro-L-arginine (L-NNA) was then administered (35 mg/kg, via RV catheter) to inhibit nitric oxide (NO) production, and the hypoxia protocol was repeated. RC blood flow increased during hypoxia due to coronary vasodilation, because RC conductance increased from 0.65 +/- 0.05 to 1.32 +/- 0.12 ml x min(-1) x 100 g(-1) x L-NNA blunted the hypoxia-induced increase in RC conductance. RV O(2) extraction remained constant at 64 +/- 4% as Pa(O(2)) was decreased, but after L-NNA, extraction increased to 70 +/- 3% during normoxia and then to 78 +/- 3% during hypoxia. RV MVo(2) increased during hypoxia, but after L-NNA, MVo(2) was lower at any respective Pa(O(2)). The relationship between heart rate times RV systolic pressure (rate-pressure product) and RV MVo(2) was not altered by l-NNA. To account for L-NNA-mediated decreases in RV MVo(2), O(2) demand/supply variables were plotted as functions of MVo(2). Slope of the conductance-MVo(2) relationship was depressed by L-NNA (P = 0.03), whereas the slope of the extraction-MVo(2) relationship increased (P = 0.003). In summary, increases in RV MVo(2) during hypoxia are met normally by increasing RC blood flow. When NO synthesis is blocked, the large RV O(2) extraction reserve is mobilized to maintain RV O(2) demand/supply balance. We conclude that NO contributes to RC vasodilation during systemic hypoxia.  相似文献   

7.
Carbon monoxide     
Eric Jeffries 《CMAJ》1984,130(4):514-515
  相似文献   

8.
Nitric oxide (NO) is thought to play an important role in the regulation of neonatal pulmonary vasculature. It has been suggested that neonates with pulmonary hypertension have a defective NO pathway. Therefore, we measured in 1-day-old piglets exposed to hypoxia (fraction of inspired O(2) = 0.10) for 3 or 14 days to induce pulmonary hypertension 1) the activity of NO synthase (NOS) via conversion of L-arginine to L-citrulline and the concentration of the NO precursor L-arginine in isolated pulmonary vessels, 2) the vasodilator response to the NO donor 3-morpholinosydnonimine-N-ethylcarbamide (SIN-1) and the cGMP analog 8-bromo-cGMP in isolated perfused lungs, and 3) the production of cGMP in response to SIN-1 in isolated perfused lungs. After 3 days of exposure to hypoxia, endothelial NOS (eNOS) activity was unaffected, whereas, after 14 days of hypoxia, eNOS activity was decreased in the cytosolic fraction of pulmonary artery (P < 0.05) but not of pulmonary vein homogenates. Inducible NOS activity was decreased in the cytosolic fraction of pulmonary artery homogenates after both 3 (P < 0.05) and 14 (P < 0.05) days of hypoxia but was unchanged in pulmonary veins. Pulmonary artery levels of L-arginine were unaffected by hypoxic exposure. After 3 days of exposure to hypoxia, the reduction in the dilator response to SIN-1 (P < 0.05) coincided with a decrease in cGMP production (P < 0.005), suggesting that soluble guanylate cyclase activity may be altered. When the exposure was prolonged to 14 days, dilation to SIN-1 remained decreased (P < 0.05) and, although cGMP production normalized, the dilator response to 8-bromo-cGMP decreased (P < 0.05), suggesting that, after prolonged exposure to hypoxia, cGMP-dependent mechanisms may also be impaired. In conclusion, neonatal hypoxia-induced pulmonary hypertension is associated with multiple disruptions in the NO pathway.  相似文献   

9.
Shin HK  Park SN  Hong KW 《Life sciences》2000,67(12):1435-1445
This study aimed to evaluate the role for adenosine A2A receptors in the autoregulatory vasodilation to hypotension in relation with cerebral blood flow (CBF) autoregulation in rat pial arteries. Changes in pial artery diameters were observed directly through a closed cranial window. Vasodilation induced by adenosine was markedly suppressed by ZM 241385 (1 micromol/l, A2A antagonist) and alloxazine (1 micromol/l, A2B antagonist), but not by 8-cyclopentyltheophylline (CPT, 1 micromol/l, A1 antagonist). CGS-21680-induced vasodilation was more strongly inhibited by ZM 241385 (25.3-fold; P<0.05) than by alloxazine. In contrast, 5'-N-ethylcarboxamido-adenosine (NECA)-induced vasodilation was more prominently suppressed by alloxazine (12.0-fold; P<0.001) than by ZM 241385. The autoregulatory vasodilation in response to acute hypotension of the pial arteries was significantly suppressed by ZM 241385, but not by CPT and alloxazine. Consistent with this finding, the lower limit of CBF autoregulation significantly shifted to a higher blood pressure by 1 micromol/l of ZM 241385 (53.0+/-3.9 mm Hg to 69.2+/-2.9 mm Hg, P<0.01) and 10 micromol/l of glibenclamide (54.7+/-6.5 mm Hg to 77.9+/-4.2 mm Hg, P<0.001), but not by CPT and alloxazine. Thus, it is suggested that adenosine-induced vasodilation of the rat pial artery is mediated via activation of adenosine A2A and A2B receptors, but not by A1 subtype, and activation of adenosine A2A receptor preferentially contributes to the autoregulatory vasodilation via activation of ATP-sensitive K+ channels in response to hypotension and maintenance of CBF autoregulation.  相似文献   

10.
The hypothesis was addressed that CO-induced cerebral vasodilation requires a permissive cGMP signal that can be produced by nitric oxide (NO). Anesthetized piglets were implanted with cranial windows for measurement of pial arteriolar responses to stimuli. Pial arterioles dilated in response to isoproterenol (Iso), sodium nitroprusside (SNP), and CO or the CO-releasing molecule Mn2(CO)10 [dimanganese decacarbonyl (DMDC)]. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, decreased cerebrospinal fluid (CSF) cGMP and selectively inhibited dilations to SNP and DMDC without affecting the dilation to Iso. However, DMDC did not cause an increase in cortical periarachnoid CSF cGMP concentration. cGMP clamp with a threshold dilator level of 8-bromo-cGMP (10(-4) M) and ODQ restored the dilation to DMDC that had been blocked by ODQ alone. Under these conditions, cGMP was present but could not increase. Inhibition of the pial arteriolar dilation to glutamate by N-nitro-l-arginine, which blocks NO synthase, was similar to that by heme oxygenase inhibitors, which block endogenous CO production. The dilation to glutamate, similar to dilation to DMDC, was partially restored by 8-bromo-cGMP and completely restored by SNP (5 x 10(-7) M). These data suggest that the permissive role of NO in CO- and glutamate-induced vasodilation involves maintaining the minimum necessary cellular level of cGMP to allow CO to cause dilation independently of increasing cGMP.  相似文献   

11.
Arachidonic acid (AA) and prostaglandin (PG) E(2) stimulate carbon monoxide (CO) production, and AA metabolism is known to be associated with the generation of reactive oxygen species (ROS). This study was conducted to address the hypothesis that CO and/or ROS mediate cerebrovascular dilation in newborn pigs. Experiments were performed on anesthetized newborn pigs with closed cranial windows. Different concentrations of AA (10(-8)-10(-6) M), PGE(2) (10(-8)-10(-6) M), iloprost (10(-8)-10(-6) M), and their vehicle (artificial cerebrospinal fluid) were given. Piglets with PGE(2) and iloprost received indomethacin (5 mg/kg iv) to inhibit cyclooxygenase. AA, PGE(2), and iloprost caused concentration-dependent increases in pial arteriolar diameter. The effects of both AA and PGE(2) in producing cerebral vascular dilation and associated CO production were blocked by the heme oxygenase inhibitor chromium mesoporphyrin (2 × 10(-5) M), but not by the prostacyclin analog, iloprost. ROS inhibitor tempol (SOD mimetic) (1 × 10(-5) M) and the H(2)O(2) scavenger catalase (1,000 U/ml) also do not block these vasodilator effects of AA and PGE(2). Heme-L-lysinate-induced cerebrovascular dilation and CO production was blocked by chromium mesoporphyrin. Hypoxanthine plus xanthine oxidase, a combination that is known to generate ROS, caused pial arteriolar dilation and CO production that was inhibited by tempol and catalase. These data suggest that AA- and PGE(2)-induced cerebral vascular dilation is mediated by CO, independent of ROS.  相似文献   

12.
Michael C. Dolan 《CMAJ》1985,133(5):392-397,399
Carbon monoxide poisoning is a significant cause of illness and death. Its protean symptoms probably lead to a gross underestimation of its true incidence. Low levels of carbon monoxide aggravate chronic cardiopulmonary problems, and high levels are associated with cardiac arrhythmias and cerebral edema. Patients who survive acute poisoning are at risk of delayed neurologic sequelae. The measurement of carboxyhemoglobin levels does not reveal the tissue levels of carbon monoxide but is useful in determining therapy. Treatment includes the monitoring and management of cardiac arrhythmias and oxygenation. Hyperbaric oxygenation is beneficial, but there are currently no definite criteria for its use.  相似文献   

13.
14.
15.
16.
17.
18.
Summary A preliminary study of formate production from CO plus H2O using the intact cells ofMethanosarcina barkeri was conducted. Formate production from CO gas required the participation of three enzymes, CO dehydrogenase, hydrogenase and formate dehydrogenase. Hypophosphite inhibited formate formation from CO plus H2O by about 80%. In this system, 9 g/l of formate could be obtained from CO gas after 48 h of incubation at 37°C, pH 8.0.  相似文献   

19.
Diazoxide (Diaz), an activator of mitochondrial ATP-sensitive K+ (mitoKATP) channels, is neuroprotective, but the mechanism of action is unclear. We tested whether Diaz preserves endothelium-dependent (hypercapnia) or -independent [iloprost (Ilo)] cerebrovascular dilator responses after ischemia-reperfusion (I/R) in newborn pigs and whether the effect of Diaz is sensitive to 5-hydroxydecanoate (5-HD), an inhibitor of mitoKATP channels. Anesthetized, ventilated piglets (n = 48) were equipped with closed cranial windows. Changes in diameter of pial arterioles were determined with intravital microscopy in response to graded hypercapnia (5-10% CO2 - 21% O2-balance N2, n = 25) or Ilo (0.1-1 microg/ml, n = 18) before and 1 h after 10 min of global I/R. Experimental groups were pretreated with vehicle, NS-398 (a selective cyclooxygenase-2 inhibitor, 1 mg/kg), Diaz (3 mg/kg), or 5-HD (20 mg/kg) + Diaz. Potential direct effects of Diaz and 5-HD on hypercapnic vasodilation were also tested in the absence of I/R (n = 5). To confirm the direct effect of Diaz on mitochondria, mitochondrial membrane potential in cultured piglet cerebrovascular endothelial cells was monitored using Mito Tracker Red. Hypercapnia resulted in dose-dependent pial arteriolar vasodilation, which was attenuated by approximately 70% after I/R in vehicle- and NS-398-treated animals. Diaz and 5-HD did not affect the CO2 response. Diaz significantly preserved the postischemic vasodilation response to hypercapnia, but not to Ilo. Diaz depolarized mitochondria in cultured piglet cerebrovascular endothelial cells, and 5-HD completely abolished the protective effect of Diaz, both findings indicate a role for mitoKATP channels. In summary, preservation of arteriolar dilator responsiveness by Diaz may contribute to neuroprotection.  相似文献   

20.
Carbon monoxide (CO) is an endogenous dilator in the newborn cerebral microcirculation. Other dilators include prostanoids and nitric oxide (NO), and interactions among the systems are likely. Experiments on anesthetized piglets with cranial windows address the hypothesis that CO-induced dilation of pial arterioles involves interaction with the prostanoid and NO systems. Topical application of CO or the heme oxygenase substrate heme-L-lysinate (HLL) produced dilation. Indomethacin, N(omega)-nitro-L-arginine (L-NNA), and either iberiotoxin or tetraethylammonium chloride (TEA) were used to inhibit prostanoids, NO, and Ca(2+)-activated K(+) (K(Ca)) channels, respectively. Indomethacin, L-NNA, iberiotoxin, or TEA blocked cerebral vasodilation to CO and HLL. Vasodilations to both CO and HLL were returned to indomethacin-treated piglets by topical application of iloprost. Vasodilations to both CO and HLL were returned to L-NNA-treated piglets by sodium nitroprusside but not iloprost. In iberiotoxin- or TEA-treated piglets, dilations to CO and HLL could not be restored by either iloprost or sodium nitroprusside. The dilator actions of CO involve prostacyclin and NO as permissive enablers. The permissive actions of prostacyclin and NO may alter the K(Ca) channel response to CO because neither iloprost nor sodium nitroprusside could restore dilation to CO when these channels were blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号