首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate kinase (AK) uses one each of Mg-complexed and free adenylates as substrates in both directions of its reaction. It is very active in the mitochondrial intermembrane space (IMS), but is absent from the mitochondrial matrix where low [ADP] upon intensive respiration limits the respiratory rate. AK activity in the IMS is linked to ATP/ADP exchange across the inner mitochondrial membrane by using ATP (imported from the matrix) and AMP as substrates, the latter provided by apyrase and other AMP-generating reactions. The ADP formed by AK is exported to the matrix (in exchange for ATP), providing a mechanism for regeneration of ADP during respiration. From the AK equilibrium, and taking pH values characteristic of subcellular compartments, [Mg2+] in the IMS is calculated as 0.4-0.5 mM and in the cytosol as 0.2-0.3 mM, whereas the MgATP:MgADP ratio in the IMS and cytosol is 6-9 and 10-15, respectively. These represent optimal conditions for transport of adenylates (via the maintenance of an ATPfree:ADPfree ratio close to 1) and mitochondrial respiratory rates (via the maintenance of submillimolar [ADPfree] in the IMS). This, in turn, has important consequences for mitochondrial and cytosolic metabolism, including regulation of the protein phosphorylation rate (via changes in the MgATP:AMPfree ratio) and allosteric regulation of mitochondrial and cytosolic enzymes. Metabolomic consequences are discussed in connection with the calculation of metabolic fluxes from subcompartmental distributions of total adenylates and Mg2+.  相似文献   

2.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

3.
The adenylate kinase (AK) isoforms network plays an important role in the intracellular energy transfer processes, the maintenance of energy homeostasis, and it is a major player in AMP metabolic signaling circuits in some highly-differentiated cells. For this purpose, a rapid and sensitive method was developed that enables to estimate directly and semi-quantitatively the distribution between cytosolic AK1 and mitochondrial AK2 localized in the intermembrane space, both in isolated cells and tissue samples (biopsy material). Experiments were performed on isolated rat mitochondria or permeabilized material, including undifferentiated and differentiated neuroblastoma Neuro-2a cells, HL-1 cells, isolated rat heart cardiomyocytes as well as on human breast cancer postoperative samples. In these samples, the presence of AK1 and AK2 could be detected by high-resolution respirometry due to the functional coupling of these enzymes with ATP synthesis. By eliminating extra-mitochondrial ADP with an excess of pyruvate kinase and its substrate phosphoenolpyruvate, the coupling of the AK reaction with mitochondrial ATP synthesis could be quantified for total AK and mitochondrial AK2 as a specific AK index. In contrast to the creatine kinase pathway, the AK phosphotransfer pathway is up-regulated in murine neuroblastoma and HL-1 sarcoma cells and in these malignant cells expression of AK2 is higher than AK1. Differentiated Neuro-2a neuroblastoma cells exhibited considerably higher OXPHOS capacity than undifferentiated cells, and this was associated with a remarkable decrease in their AK activity. The respirometric method also revealed a considerable difference in mitochondrial affinity for AMP between non-transformed cells and tumor cells.  相似文献   

4.
The parameters of oxidative phosphorylation and its interaction with creatine kinase (CK)- and adenylate kinase (AK)-phosphotransfer networks in situ were studied in skinned atrial fibers from 59 patients undergoing coronary artery bypass surgery, valve replacement/correction and atrial septal defect correction. In atria, the mitochondrial CK and AK are effectively coupled to oxidative phosphorylation, the MM-CK is coupled to ATPases and there exists a direct transfer of adenine nucleotides between mitochondria and ATPases. Elimination of cytoplasmic ADP with exogenous pyruvate kinase was not associated with a blockade of the stimulatory effects of creatine and AMP on respiration, neither could it abolish the coupling of MM-CK to ATPases and direct transfer of adenine nucleotides. Thus, atrial energy metabolism is compartmentalized so that mitochondria form functional complexes with adjacent ATPases. These complexes isolate a part of cellular adenine nucleotides from their cytoplasmic pool for participating in energy transfer via CK- and AK-networks, and/or direct exchange. Compared to atria in sinus rhythm, the fibrillating atria were larger and exhibited increased succinate-dependent respiration relative to glutamate-dependent respiration and augmented proton leak. Thus, alterations in mitochondrial oxidative phosphorylation may contribute to pathogenesis of atrial fibrillation. (Mol Cell Biochem 270: 49–61, 2005)  相似文献   

5.
Nitric oxide biosynthesis in cardiac muscle leads to a decreased oxygen consumption and lower ATP synthesis. It is suggested that this effect of nitric oxide is mainly due to the inhibition of the mitochondrial respiratory chain enzyme, cytochrome c oxidase. However, this work demonstrates that nitric oxide is able to inhibit soluble mitochondrial creatine kinase (CK), mitochondrial CK bound in purified mitochondria, CK in situ in skinned fibres as well as the functional activity of mitochondrial CK in situ in skinned fibres. Since mitochondrial isoenzyme is functionally coupled to oxidative phosphorylation, its inhibition also leads to decreased sensitivity of mitochondrial respiration to ADP and thus decreases ATP synthesis and oxygen consumption under physiological ADP concentrations.  相似文献   

6.
The cellular energy metabolism in human musculus gluteus medius (MGM) under normal conditions and hip osteoarthritis (OA) was explored. The functions of oxidative phosphorylation and energy transport systems were analyzed in permeabilized (skinned) muscle fibers by oxygraphy, in relation to myosin heavy chain (MHC) isoform distribution profile analyzed by SDS-PAGE, and to creatine kinase (CK) and adenylate kinase (AK) activities measured spectrophotometrically in the intact muscle. The results revealed high apparent Km for ADP in regulation of respiration that decreased after addition of creatine in MGM of traumatic patients (controls). OA was associated with increased sensitivity of mitochondrial respiration to ADP, decreased total activities of AK and CK with major reduction in mi-CK fraction, and attenuated effect of creatine on apparent Km for ADP compared with control group. It also included a complete loss of type II fibers in a subgroup of patients with the severest disease grade. It is concluded that energy metabolism in MGM cells is organized into functional complexes of mitochondria and ATPases. It is suggested that because of degenerative remodeling occurring during development of OA, these complexes become structurally and functionally impaired, which results in increased access of exogenous ADP to mitochondria and dysfunction of CK-phosphotransfer system.  相似文献   

7.
Mitochondria in excitable cells are recurrently exposed to pulsatile calcium gradients that activate cell function. Rapid calcium uptake by the mitochondria has previously been shown to cause uncoupling of oxidative phosphorylation. To test (i) if periodic nerve firing may cause oscillation of the cytosolic thermodynamic potential of ATP hydrolysis and (ii) if cytosolic adenylate (AK) and creatine kinase (CK) ATP buffering reactions dampen such oscillations, a lumped kinetic model of an excitable cell capturing major aspects of the physiology has been developed. Activation of ATP metabolism by low-frequency calcium pulses caused large oscillation of the cytosolic, but not mitochondrial ATP/ADP, ratio. This outcome was independent of net ATP synthesis or hydrolysis during mitochondrial calcium uptake. The AK/CK ATP buffering reactions dampened the amplitude and rate of cytosolic ATP/ADP changes on a timescale of seconds, but not milliseconds. These model predictions suggest that alternative sources of capacitance in neurons and striated muscles should be considered to protect ATP-free energy-driven cell functions.  相似文献   

8.
The role of ubiquitous mitochondrial creatine kinase (uMtCK) reaction in regulation of mitochondrial respiration was studied in purified preparations of rat brain synaptosomes and mitochondria. In permeabilized synaptosomes, apparent Km for exogenous ADP, Km (ADP), in regulation of respiration in situ was rather high (110 +/- 11 microM) in comparison with isolated brain mitochondria (9 +/- 1 microM). This apparent Km for ADP observed in isolated mitochondria in vitro dramatically increased to 169 +/- 52 microM after their incubation with 1 muM of dimeric tubulin showing that in rat brain, particularly in synaptosomes, mitochondrial outer membrane permeability for ADP, and ATP may be restricted by tubulin binding to voltage dependent anion channel (VDAC). On the other hand, in synaptosomes apparent Km (ADP) decreased to 25 +/- 1 microM in the presence of 20 mM creatine. To fully understand this effect of creatine on kinetics of respiration regulation, complete kinetic analysis of uMtCK reaction in isolated brain mitochondria was carried out. This showed that oxidative phosphorylation specifically altered only the dissociation constants for MgATP, by decreasing that from ternary complex MtCK.Cr.MgATP (K (a)) from 0.13 +/- 0.02 to 0.018 +/- 0.007 mM and that from binary complex MtCK.MgATP (K (ia)) from 1.1 +/- 0.29 mM to 0.17 +/- 0.07 mM. Apparent decrease of dissociation constants for MgATP reflects effective cycling of ATP and ADP between uMtCK and adenine nucleotide translocase (ANT). These results emphasize important role and various pathophysiological implications of the phosphocreatine-creatine kinase system in energy transfer in brain cells, including synaptosomes.  相似文献   

9.
Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport.  相似文献   

10.
Recent studies indicate that the mucosa of the urinary bladder may play a major role in the maintenance of normal bladder function. The mucosal surface of the urinary bladder serves as a protective layer against the irritative solutes found in the urine. The integrity of this barrier can be broken by overdistension, anoxia, detergents, alcohols, bacterial infection and by contact with agents to which the mucosa has been sensitized.In view that both anoxia and ischemia can mediate a breakdown in the role of the mucosal layer as a permeability barrier, it is reasonable to assume that this function is dependent on cellular metabolism. As an initial investigation we have compared a variety of biochemical and metabolic parameters between the mucosal layer (consisting of the lamina propria, urothelium, and any connective tissue and vascular tissue within this layer); and the muscularis layer.The results of these studies demonstrated that the rate of glucose metabolism to lactic acid (LA) of the mucosa was more than three-fold greater than that of the smooth muscle. The rate of CO2 production of the mucosa was 60% greater than that of the unstimulated smooth muscle. The maximal activity of the mitochondrial enzyme citrate synthase was significantly greater in the mucosa than in the smooth muscle, however, the activity of malate dehydrogenase was similar for both tissues. The maximal activity of the cytosolic enzyme creatine kinase was more than two-fold greater in the bladder smooth muscle than in the mucosa; although the affinities of the creatine kinase isoforms of the mucosa were sigificantly greater than those of the muscle.Although the concentrations of ATP and ADP were similar in both muscle and mucosa, the level of creatine phosphate (CP) was over four-fold greater in the bladder muscle while the level of AMP in the muscle was only 58% of that in the mucosal epithelium.In summary, the rate of glucose metabolism was greater in the mucosa than in the smooth muscle although the concentrations of high energy phosphates (ATP+CP) was significantly greater in the smooth muscle. Future studies will be directed at identifying the specific cellular processes within the mucosal layer that relate to the function of the urothelium as a permeability barrier.  相似文献   

11.
Free cytosolic adenylates were examined in relation to adenosine plus inosine released from perfused working guinea-pig hearts. Whole-tissue adenylate data from freeze-clamped hearts were quantitatively compared with corresponding values obtained by subcellular fractionation of homogenized myocardium in non-aqueous media. Adenosine and inosine in venous cardiac effluents were measured by high-performance liquid chromatography. Hearts, perfused at their natural flows, were subjected to various workloads, substrates and catecholamines to alter myocardial energy metabolism and respiration over a wide physiological range. Non-aqueous cytosolic ATP and creatine phosphate (CrP) accounted for more than 80% of the respective total myocardium content. The cytosolic CrP/Pi ratio was in near-quantitative agreement with the overall tissue CrP/Pi ratio when the latter parameter was corrected for extracellular Pi. This was conclusive evidence that ATP, CrP and Pi were predominantly located in the cytosol of the well-oxygenated cardiomyocyte. Measured myocardial oxygen uptake (MVO2) was reciprocally related to the phosphorylation state of CrP [( CrP]/[Cr] X [Pi]) and hence that of ATP [( ATP]/[ADP] X [Pi]) assuming the creatine kinase at near-equilibrium at a near-constant pH of 7.2. On the other hand, calculated mean free cytosolic ADP concentrations increased essentially linearly up to threefold with increasing MVO2 in the presence of virtually unchanged or only slightly decreased ATP levels; this was found both according to the whole tissue and the special subcellular fractionation data. Employing the myokinase mass-action ratio and substituting total cardiac ADP by the mean free cytosolic ADP concentrations, the mean free cytosolic AMP concentrations proved to be in the nanomolar range, i.e. up to three orders of magnitude lower than the overall tissue AMP content. We propose, therefore, that in the normoxic heart, AMP is located predominantly in the mitochondrial compartment. Nevertheless, both free cytosolic AMP concentration and release of adenosine plus inosine were apparently square or even higher-power functions of the rate of cardiac respiration. On the other hand, the mean purine nucleoside release seemed linearly correlated (r = 0.920) with the calculated free cytosolic AMP concentration. Our observations seem to suggest that the concentrations of free ADP and AMP in the cytosol are major determinants of the production of inosine and coronary vasodilator adenosine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In rat liver mitochondria all nucleoside diphosphate kinase of the outer compartment is associated with the outer surface of the outer membrane (Lipskaya, T. Yu., and Plakida, K. N. (2003) Biochemistry (Moscow), 68, 1136-1144). In the present study, three systems operating as ADP donors for oxidative phosphorylation have been investigated. The outer membrane bound nucleoside diphosphate kinase was the first system tested. Two others employed yeast hexokinase and yeast nucleoside diphosphate kinase. The two enzymes exhibited the same activity but could not bind to mitochondrial membranes. In all three systems, muscle creatine phosphokinase was the external agent competing with the oxidative phosphorylation system for ADP. Determination of mitochondrial respiration rate in the presence of increasing quantities of creatine phosphokinase revealed that at large excess of creatine phosphokinase activity over other kinase activities (of the three systems tested) and oxidative phosphorylation the creatine phosphokinase reaction reached a quasi-equilibrium state. Under these conditions equilibrium concentrations of all creatine phosphokinase substrates were determined and K(eq)app of this reaction was calculated for the system with yeast hexokinase. In samples containing active mitochondrial nucleoside diphosphate kinase the concentrations of ATP, creatine, and phosphocreatine were determined and the quasi-equilibrium concentration of ADP was calculated using the K(eq)app value. At balance of quasi-equilibrium concentrations of ADP and ATP/ADP ratio the mitochondrial respiration rate in the system containing nucleoside diphosphate kinase was 21% of the respiration rate assayed in the absence of creatine phosphokinase; in the system containing yeast hexokinase this parameter was only 7% of the respiration rate assayed in the absence of creatine phosphokinase. Substitution of mitochondrial nucleoside diphosphate kinase with yeast nucleoside diphosphate kinase abolished this difference. It is concluded that oxidative phosphorylation is accompanied by appearance of functional coupling between mitochondrial nucleoside diphosphate kinase and the oxidative phosphorylation system. Possible mechanisms of this coupling are discussed.  相似文献   

13.
Qualitative and quantitative measures of mitochondrial function were performed in rats selectively bred 15 generations for intrinsic aerobic high running capacity (HCR; n = 8) or low running capacity (LCR; n=8). As estimated from a speed-ramped treadmill exercise test to exhaustion (15 degrees slope; initial velocity of 10 m/min, increased 1 m/min every 2 min), HCR rats ran 10 times further (2,375+/-80 m) compared with LCR rats (238+/-12 m). Fiber bundles were obtained from the soleus and chemically permeabilized. Respiration was measured 1) in the absence of ADP, 2) in the presence of a submaximally stimulating concentration of ADP (0.1 mM ADP, with and without 20 mM creatine), and 3) in the presence of a maximally stimulating concentration of ADP (2 mM). Although non-ADP-stimulated and maximally ADP-stimulated rates of respiration were 13% higher in HCR compared with LCR, the difference was not statistically significant (P>0.05). Despite a similar rate of respiration in the presence of 0.1 mM ADP, HCR rats demonstrated a higher rate of respiration in the presence of 0.1 mM ADP+20 mM creatine (HCR 33% higher vs. LCR, P<0.05). Thus mitochondria from HCR rats exhibit enhanced mitochondrial sensitivity to creatine (i.e., the ability of creatine to decrease the Km for ADP). We propose that increased respiratory sensitivity to ADP in the presence of creatine can effectively increase muscle sensitivity to ADP during exercise (when creatine is increased) and may be, in part, a contributing factor for the increased running capacity in HCR rats.  相似文献   

14.
The skinned fibers technique was applied for studies of the effects of global acute ischemia (1 h at 37°C) and long time (15 h) hypothermic (4°C) preservation of isolated rat hearts under different conditions (immersion or low-flow perfusion) on mitochondrial function in the cells in vivo. Skinned fibers were obtained by using saponin for permeabilization of the sarcolemma in separated fiber bundles cut from left ventricle. The experimental protocol of the respiration rate determination included a cytochrome c test to check the intactness of the outer mitochondrial membrane. The apparent Km for ADP and the effect of creatine on the mitochondrial activity were also evaluated in these permeabilized fibers, taken from different groups of hearts. The preservation of low-flow perfused hearts resulted only in a slight decrease of creatine (20 mM) stimulated respiration at 0.1 mM ADP. The fibers from ischemic hearts or from hearts preserved by immersion showed a decrease of the apparent Km for ADP, and a complete loss of the stimulatory effect of creatine. In these fibers, we could observe that the outer mitochondrial membrane was damaged. In conclusion, the results of this study show that assessment of mitochondrial parameters sensitive to organelles swelling – intactness of outer membrane and functionally coupled creatine kinase reaction – are the most sensitive indicators of early hypoxic or ischemic damage to mitochondria. Their determination in biopsy samples could be used for evaluation of the efficiency of the cardiac protection in heart surgery. (Mol Cell Biochem 174: 79–85, 1997)  相似文献   

15.
In animal models, brain ischemia causes changes in respiratory capacity, mitochondrial morphology, and cytochrome c release from mitochondria as well as a rise in cytosolic Ca2+ concentration. However, the causal relationship of the cellular processes leading to mitochondrial deterioration in brain has not yet been clarified. Here, by applying various techniques, we used isolated rat brain mitochondria to investigate how hypoxia/reoxygenation and nonphysiological Ca2+ concentrations in the low micromolar range affect active (state 3) respiration, membrane permeability, swelling, and morphology of mitochondria. Either transient hypoxia or a micromolar rise in extramitochondrial Ca2+ concentration, given as a single insult alone, slightly decreased active respiration. However, the combination of both insults caused devastating effects. These implied almost complete loss of active respiration, release of both NADH and cytochrome c, and rupture of mitochondria, as shown by electron microscopy. Mitochondrial respiration deteriorated even in the presence of cyclosporin A, documenting that membrane permeabilization occurred independent of mitochondrial permeability transition pore. Ca2+ has to enter the mitochondrial matrix in order to mediate this mitochondrial injury, because blockade of the mitochondrial Ca2+-transport system by ruthenium red in combination with CGP37157 completely prevented damage. Furthermore, protection of respiration from Ca2+-mediated damage by the adenine nucleotide ADP, but not by AMP, during hypoxia/reoxygenation is consistent with the delayed susceptibility of brain mitochondria to prolonged hypoxia, which is observed in vivo.  相似文献   

16.
In order to investigate the potential role of cytosolic phosphates ([ATP], [ADP] and [Pi]) in the integration of mitochondrial respiration and mechanical function in the perfused heart, inhibition of the substrate end of the respiratory chain by amytal has been employed. A stepwise increase in amytal concentration (from 0.2 to 1.2 mM) resulted in the progressive abolition of the cardiac oxygen consumption, rate (VO2) in hearts oxidizing pyruvate (5 mM). The inhibition curve for VO2 was S-shaped, with K0.5 = 1.1 mM, and independent of the initial VO2 values varied by coronary flow and isoproterenol (Iso) addition. ADP-stimulated respiration of isolated mitochondria (malate + pyruvate) was twice as sensitive to amytal inhibition, whereas state 2 respiration (before ADP addition) had the same sensitivity as cardiac VO2. Decrease in VO2 was followed by a decline in phosphocreatine (PCr) content and augmentation of Pi at nearly constant ATP level and intracellular pH as assessed by the 31P-NMR method. These changes were associated with an elevation of cytosolic free [ADP] and a reduction of the [ATP]/[ADP] ratio and ATP affinity calculated from creatine kinase equilibrium. Concomitantly, pressure-rate product (PRP), maximal rates of contraction and relaxation fell down and the end diastolic pressure (EDP) rose at all initial loads. Amytal-inhibited hearts retained the capability to respond to Iso stimulation (0.1 microM, about 50% enhancement of PRP) even at 1 mM amytal, but their response to elevation of coronary flow was greatly diminished. Alterations in the PRP value induced by the inhibitor at a fixed coronary flow correlated negatively with cytosolic [ADP] and [Pi], and positively with [ATP]/[ADP] and A(ATP). In contrast, EDP correlated with all these parameters in the opposite manner. However, when PRP was varied by coronary flow in the absence of the inhibitor or at its fixed concentrations, such correlations were absent. These data imply that cytosolic phosphates can serve as a feedback between energy production and utilization when the control point(s) is (are) at the mitochondria. In contrast, other regulatory mechanisms should be involved when control is distributed among different steps located both in energy producing and utilizing systems.  相似文献   

17.
In order to elucidate the mechanism of stress ulceration, which is mainly involved with the corpus mucosa of the stomach, the aerobic energy metabolism of the corpus mucosa of rats, rabbits and humans was investigated and compared with those of the antral mucosa as well as other organs such as heart, kidney and liver. The results showed that the activities of respiration and oxidative phosphorylation and the concentration of the respiratory chain components were far greater in the corpus mucosa than in the antral mucosa, the activities in the former being almost equal to that of the highly aerobic tissue, kidney cortex. Furthermore, the endogenous respiratory rate (in the absence of added substrate) was also much higher in the corpus mucosa than in the antral mucosa, indicating that oxygen demand at resting state (during the period of H+ secretion) is also higher in the corpus mucosa. We conclude that in the corpus mucosa of the stomach the aerobic energy metabolism is predominant. It is suggested that circulatory insufficiency may easily result in cell damage mainly of the corpus mucosa due to energy deficit.  相似文献   

18.
Influence of mitochondrial content on the sensitivity of respiratory control   总被引:13,自引:0,他引:13  
This study evaluated the sensitivity of mitochondrial respiratory control as a function of tissue oxidative capacity. The mitochondrial content of rat skeletal muscle was increased by exercise training or decreased by hypothyroidism. Muscles of the lower hindlimb were stimulated to tetanically contract in situ for 3 min at one of four frequencies to elicit a 30-fold range of oxygen consumption rates. Freeze-clamped sections of fast-twitch red gastrocnemius muscle were extracted and analyzed for metabolite levels. The sensitivity of respiratory control was examined for three models of cytosolic respiratory control (ADPf, ATP/ADPf, and ATP/(ADPf X Pi]; for each proposed model, sensitivity went up as mitochondrial content increased. Thus, a smaller change in cytosolic modulator (e.g., ADPf) is required as oxidative capacity increases. Increases in the sensitivity of cytosolic respiratory control resulted in lower flux through the near-equilibrium energy exchange reactions of creatine kinase and myokinase such that calculated free concentrations of ADP and AMP were less. Other energetically important reactions/pathways were also affected. Accumulation of lactate and the deamination of AMP to IMP were lower in tissues with higher mitochondrial content. In summary, changes in oxidative capacity directly influence the sensitivity of cytosolic respiratory control and this, in turn, has important consequences for maintenance of cellular energy balance.  相似文献   

19.
Bioenergetic and hemodynamic consequences of cellular redox manipulations by 0.2-20 mM pyruvate were compared with those due to adrenergic stress (0.7-1.1 microM norepinephrine) using isolated working guinea-pig hearts under the conditions of normoxia, low-flow ischemia, and reperfusion. 5 mM glucose (+ 5 U/l insulin) + 5 mM lactate were the basal energy-yielding substrates. To stabilize left ventricular enddiastolic pressure, ventricular filling pressure was held at 12 cmH2O under all conditions; this preload control minimized Frank-Starling effects on ventricular inotropism. Global low-flow ischemia was induced by reducing aortic pressure to levels (20-10 cmH2O) below the coronary autoregulatory reserve. Reactants of the creatine kinase, including H+ and other key metabolites, were measured by enzymatic, HPLC, and polarographic techniques. In normoxic hearts, norepinephrine stimulations of inotropism, heart rate x pressure product, and oxygen consumption (MVO2) were associated with a fall in the cytosolic phosphorylation potential [( ATP]/[( ADP].[Pi]] as judged by the creatine kinase equilibrium. In contrast, infusion of excess pyruvate (5 mM) markedly increased [ATP]/[( ADP].[Pi]) and ventricular work output, while intracellular phosphate decreased; MVO2 remained constant under the same conditions. During reperfusion following ischemia, pyruvate effected striking and concentration-dependent increases in MVO2, phosphorylation potential, and inotropism. Pyruvate dehydrogenase flux was augmented during reperfusion hyperemia followed by near-complete recoveries of [ATP]/([ADP].[Pi]), contractile force, heart rate x pressure product, and MVO2 in the presence of 5-10 mM pyruvate. Pyruvate also attenuated ischemic adenylate degradation. Omission of glucose from the perfusion medium rendered pyruvate ineffective in postischemic hearts. Similarly, excess lactate (5-15 mM) or acetate (5 mM) failed to reenergize reperfused hearts and severe depressions of MVO2 and inotropism developed despite the presence of glucose. Apparently, subcellular redox manipulations by pyruvate dissociated stimulated mitochondrial respiration and increased inotropism from low cytosolic phosphorylation potentials. This was evidence against the extramitochondrial [ADP].[Pi]/[ATP] ratio being the primary factor in the control of mitochondrial respiration. The mechanism of pyruvate enhancement of inotropism during normoxia and reperfusion is probably multifactorial. Thermodynamic effects on subcellular [NADH]/[NAD+] ratios are coupled with a rise in the cytosolic [ATP]/[( ADP].[Pi]) ratio at constant (normoxia) or increased (reperfusion) MVO2.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The route of movement of ADP produced in the mitochondrial creatine kinase reaction was investigated by recording the rate of ADP-dependent oxygen consumption in the presence of phosphoenolpyruvate and pyruvate kinase. This pyruvate kinase system completely abolished activation of respiration by ADP added or by ADP produced in the hexokinase reaction in the medium, but was not able to inhibit the creatine kinase activated respiration when creatine kinase was bound to the inner mitochondrial membrane. These different responses of oxidative phosphorylation were observed at equal ATPADP ratios in the medium. The data obtained evidence direct channeling of ADP from heart mitochondrial creatine kinase to the adenine nucleotide translocase without its prompt release into the medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号