首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In na?ve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in na?ve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.  相似文献   

2.
The quantification of mechanical interventricular asynchrony (IVA) was investigated. In 12 dogs left bundle branch block (LBBB) was induced by radio frequency ablation. Left ventricular (LV) and right ventricular (RV) pressures were recorded before and after induction of LBBB and during LBBB + LV apex pacing at different atrioventricular (AV) delays. Four IVA measures were validated using computer simulations on experimentally obtained pressure signals. The most robust measure for IVA was the time delay between the upslope of the LV and RV pressure signals (DeltaT(up)), estimated by cross correlation. The induction of experimental LBBB decreased DeltaT(up) from -6.9 +/- 7.0 ms (RV before LV) to -33.9 +/- 7.6 ms (P < 0.05) in combination with a significant decrease of LV maximal first derivative of pressure development over time (dP/dt(max)). During LV apex pacing, DeltaT(up) increased with decreasing AV delay up to +20.9 +/- 14.6 ms (P < 0.05). Interventricular resynchronization (DeltaT(up) = 0 ms) significantly improved LV dP/dt(max) by 15.1 +/- 5.9%. QRS duration increased significantly after induction of LBBB but did not change during LV apex pacing. In conclusion, DeltaT(up) is a reliable measure of mechanical IVA, which adds valuable information concerning the nature of asynchronous activation of the ventricles.  相似文献   

3.
Although there are several excellent indexes of myocardial contractility, they require accurate measurement of pressure via left ventricular (LV) catheterization. Here we validate a novel noninvasive contractility index that is dependent only on lumen and wall volume of the LV chamber in patients with normal and compromised LV ejection fraction (LVEF). By analysis of the myocardial chamber as a thick-walled sphere, LV contractility index can be expressed as maximum rate of change of pressure-normalized stress (d sigma*/dt(max), where sigma* = sigma/P and sigma and P are circumferential stress and pressure, respectively). To validate this parameter, d sigma*/dt(max) was determined from contrast cine-ventriculography-assessed LV cavity and myocardial volumes and compared with LVEF, dP/dt(max), maximum active elastance (E(a,max)), and single-beat end-systolic elastance [E(es(SB))] in 30 patients undergoing clinically indicated LV catheterization. Patients with different tertiles of LVEF exhibit statistically significant differences in d sigma*/dt(max). There was a significant correlation between d sigma*/dt(max) and dP/dt(max) (d sigma*/dt(max) = 0.0075 dP/dt(max) - 4.70, r=0.88, P<0.01), E(a,max) (d sigma*/dt(max) = 1.20E(a,max) + 1.40, r=0.89, P<0.01), and E(es(SB)) [d sigma*/dt(max)=1.60 E(es(SB)) + 1.20, r=0.88, P<0.01]. In 30 additional individuals, we determined sensitivity of the parameter to changes in preload (intravenous saline infusion, n = 10 subjects), afterload (sublingual glyceryl trinitrate, n = 10 subjects), and increased contractility (intravenous dobutamine, n=10 patients). We confirmed that the index is not dependent on load but is sensitive to changes in contractility. In conclusion, d sigma*/dt(max) is equivalent to dP/dt(max), E(a,max), and E(es(SB)) as an index of myocardial contractility and appears to be load independent. In contrast to other measures of contractility, d sigma*/dt(max) can be assessed with noninvasive cardiac imaging and, thereby, should have more routine clinical applicability.  相似文献   

4.
This study explores the use of interventricular asynchrony (interVA) for optimizing cardiac resynchronization therapy (CRT), an idea emerging from a simple pathway model of conduction in the ventricles. Measurements were performed in six dogs with chronic left bundle branch block (LBBB) and in 29 patients of the Pacing Therapies for Congestive Heart Failure (PATH-CHF)-I study. In the dogs, intraventricular asynchrony (intraVA) was determined using left ventricular (LV) endocardial activation maps. In dogs and patients, the maximum rate of rise of LV pressure (LV dP/dt(max)) and the pulse pressure (PP) and interVA [time delay between upslope of LV and right ventricular (RV) pressure curves] were measured during LV, RV, and biventricular (BiV) pacing with various atrioventricular (AV) delays. Measurements in the canine hearts supported the pathway model in that optimal resynchronization occurred at approximately 50% reduction of intraVA and at an interVA value halfway that during LBBB and LV pacing. In patients with significant hemodynamic response during pacing (n = 22), intrinsic interVA and interVA at peak improvement (interVA(p)) varied widely between patients (from -83 to -15 ms and from -42 to +31 ms, respectively). However, the model predicted individual interVA(p) accurately (SD of +/-6 ms and +/-12 ms for LV dP/dt(max) and PP, respectively). At equal interVA, LV and BiV pacing produced equal hemodynamic response, but in 11 of 22 responders, BiV pacing reduced interVA insufficiently to reach the maximum hemodynamic response. LV pacing at short AV delay proved to result in better hemodynamics than predicted by the model, indicating that additional factors determine hemodynamics during LV preexcitation. Guided by a simple pathway model, interVA measurements accurately predict optimal hemodynamic performance in individual CRT patients.  相似文献   

5.
Right ventricular (RV) failure is a major cause of mortality in acute or chronic lung disease and left heart failure. The objective of this study was to demonstrate a percutaneous approach to study biventricular hemodynamics in murine models of primary and secondary RV pressure overload (RVPO) and further explore biventricular expression of two key proteins that regulate cardiac remodeling: calcineurin and transforming growth factor beta 1 (TGFβ1).

Methods

Adult, male mice underwent constriction of the pulmonary artery or thoracic aorta as models of primary and secondary RVPO, respectively. Conductance catheterization was performed followed by tissue analysis for changes in myocyte hypertrophy and fibrosis.

Results

Both primary and secondary RVPO decreased biventricular stroke work however RV instantaneous peak pressure (dP/dtmax) and end-systolic elastance (Ees) were preserved in both groups compared to controls. In contrast, left ventricular (LV) dP/dtmax and LV-Ees were unchanged by primary, but reduced in the secondary RVPO group. The ratio of RV:LV ventriculo-arterial coupling was increased in primary and reduced in secondary RVPO. Primary and secondary RVPO increased RV mass, while LV mass decreased in primary and increased in the secondary RVPO groups. RV fibrosis and hypertrophy were increased in both groups, while LV fibrosis and hypertrophy were increased in secondary RVPO only. RV calcineurin expression was increased in both groups, while LV expression increased in secondary RVPO only. Biventricular TGFβ1 expression was increased in both groups.

Conclusion

These data identify distinct effects of primary and secondary RVPO on biventricular structure, function, and expression of key remodeling pathways.  相似文献   

6.
We aimed to determine whether sex differences in humans extend to the dynamic response of the left ventricular (LV) chamber to changes in heart rate (HR). Several observations suggest sex influences LV structure and function in health; moreover, this physiology is also affected in a sex-specific manner by aging. Eight postmenopausal women and eight similarly aged men underwent a cardiac catheterization-based study for force-interval relationships of the LV. HR was controlled by right atrial (RA) pacing, and LV +dP/dt(max) and volume were assessed by micromanometer-tipped catheter and Doppler echocardiography, respectively. Analysis of approximated LV pressure-volume relationships was performed using a time-varying model of elastance. External stroke work was also calculated. The relationship between HR and LV +dP/dt(max) was expressed as LV +dP/dt(max) = b + mHR. The slope (m) of the relationship was steeper in women compared with men (11.8 ± 4.0 vs. 6.1 ± 4.1 mmHg·s(-1)·beats(-1)·min(-1), P = 0.01). The greater increase in contractility in women was reproducibly observed after normalizing LV +dP/dt(max) to LV end-diastolic volume (LVVed) or by measuring end-systolic elastance. LVVed and stroke volume decreased more in women. Thus, despite greater increases in contractility, HR was associated with a lesser rise in cardiac output and a steeper fall in external stroke work in women. Compared with men, women exhibit greater inotropic responses to incremental RA pacing, which occurs at the same time as a steeper decline in external stroke work. In older adults, we observed sexual dimorphism in determinants of LV mechanical performance.  相似文献   

7.
Effects of cardiac specific overexpression of beta(2)-adrenergic receptors (beta(2)-AR) on the development of heart failure (HF) were studied in wild-type (WT) and transgenic (TG) mice following myocardial infarction (MI) by coronary artery occlusion. Animals were studied by echocardiography at weeks 7 to 8 and by catheterization at week 9 after surgery. Post-infarct mortality, due to HF or cardiac rupture, was not different among WT mice, and there was no difference in infarct size (IS). Compared with the sham-operated group (all P < 0.01), WT mice with moderate (<36%) and large (>36%) IS developed lung congestion, cardiac hypertrophy, left ventricular (LV) dilatation, elevated LV end-diastolic pressure (LVEDP), and suppressed maximal rate of increase of LV pressure (LV dP/dt(max)) and fractional shortening (FS). Whereas changes in organ weights and echo parameters were similar to those in infarcted WT groups, TG mice had significantly higher levels of LV contractility in both moderate (dP/dt(max) 4,862 +/- 133 vs. 3,694 +/- 191 mmHg/s) and large IS groups (dP/dt(max) 4,556 +/- 252 vs. 3,145 +/- 312 mmHg/s, both P < 0.01). Incidence of pleural effusion (36% vs. 85%, P < 0.05) and LVEDP levels (6 +/- 0.3 vs. 9 +/- 0.8 mmHg, P < 0.05) were also lower in TG than in WT mice with large IS. Thus beta(2)-AR overexpression preserved LV contractility following MI without adverse consequence.  相似文献   

8.
Positive responses to left (LV) and biventricular (BV) stimulation observed in heart failure patients with left bundle branch block (LBBB) suggest a possible mechanism of LV resynchronization. An anesthetized canine LBBB model was developed using radio frequency ablation. Before and after ablation, LV pressure derivative over time (dP/dt) and aortic pulse pressure (PP) were assessed during normal sinus rhythm with right ventricle (RV), LV, or BV stimulation combined with four atrioventricular delays in six dogs. In three more dogs, M-mode echocardiograms of septal and LV posterior wall motion were obtained before and after LBBB and during LV stimulation. LBBB caused QRS widening and hemodynamics deterioration. Before ablation, stimulation alone worsened LV dP/dt and PP. After ablation, LV and BV stimulation maximally increased LV dP/dt by 16% and PP by 7% (P < 0.001), whereas little improvement was observed during RV stimulation. M-mode echocardiogram showed that LBBB resulted in a paradoxical septal wall motion that was corrected by LV stimulation. In conclusion, LV and BV stimulation improved cardiac function in a canine LBBB model via resynchronization of LV excitation and contraction.  相似文献   

9.
The sodium-calcium exchanger (NCX) is discussed as one of the key proteins involved in heart failure. However, the causal role and the extent to which NCX contributes to contractile dysfunction during heart failure are poorly understood. NCX overexpression was induced by infection with an adenovirus coding for NCX, which coexpressed green fluorescence protein (GFP) (AdNCX) by ex vivo gene transfer to nonfailing and failing rabbit cardiomyocytes. Myocardial gene transfer in rabbits in vivo was achieved by adenoviral delivery via aortic cross-clamping. Peak cell shortening of cardiomyocytes was determined photo-optically. Hemodynamic parameters in vivo were determined by echocardiography (fractional shortening) and tip catheter [maximal first derivative of left ventricular (LV) pressure (dP/dt(max)); maximal negative derivative of LV pressure (-dP/dt(max))]. Peak cell shortening was depressed after NCX gene delivery in isolated nonfailing and in failing cardiomyocytes. In nonfailing rabbits in vivo, basal systolic contractility (fractional shortening and dP/dt(max)) and maximum rate of LV relaxation (-dP/dt(max)) in vivo were largely unaffected after NCX overexpression. However, during heart failure, long-term NCX overexpression over 2 wk significantly improved fractional shortening and dP/dt(max) compared with AdGFP-infected rabbits, both without inotropic stimulation and after beta-adrenergic stimulation with isoproterenol. -dP/dt(max) was also improved after NCX overexpression in the failing rabbits group. These results indicate that short-term effects of NCX overexpression impair contractility of isolated failing and nonfailing rabbit cardiomyocytes. NCX overexpression over 2 wk in vivo does not seem to affect myocardial contractility in nonfailing rabbits. Interestingly, in vivo overexpression of NCX decreased the progression of systolic and diastolic contractile dysfunction and improved beta-adrenoceptor-mediated contractile reserve in heart failure in rabbits in vivo.  相似文献   

10.
Today, cardiac contractility in mice is exclusively measured under anesthesia or in sedated animals because the catheters available are too rigid to be used in awake mice. We therefore developed a new catheter (Pebax 03) to measure cardiac contractility in conscious mice. In this study, we evaluated the accuracy and utility of this new catheter for assessment of cardiac contractility in anesthetized and conscious mice. With the use of a balloon-pop test, the Pebax catheter with an inner diameter of 0.3 mm was found to exhibit a high natural frequency, a low damping coefficient, and a flat frequency of up to 50.5 +/- 0.6 Hz. Under anesthesia (0.5% or 1.0% halothane), no difference was found in heart rate (HR), left ventricular (LV) systolic pressure (LVSP), the maximum rates of LV pressure rise and fall (LV dP/dt(max) and LV dP/dt(min), respectively), ejection time (ET), and isovolumic relaxation time constant (tau) when measured with either the 1.4-Fr Millar or Pebax 03 catheter. However, when HR, LVSP, LV dP/dt(max), and LV dP/dt(min) were recorded with the Pebax catheter in awake mice, values were significantly higher, and ET and tau were lower, than under anesthesia, suggesting a major impact of anesthesia on these parameters. The Pebax catheter was also used in a normotensive one-renin gene mouse model of cardiac hypertrophy induced by DOCA and salt. In this model, DOCA-salt induced a severe decrease in cardiac contractility in the absence of changes in blood pressure. These data demonstrate that cardiac contractility can be measured very accurately in conscious mice. This new device can be of great help in the investigation of cardiac function in normal and genetically engineered mice.  相似文献   

11.
Pattern of right ventricular pressure (RVP) fall and its afterload dependence were examined by analyzing ventricular pressure curves and corresponding pressure dP/dt phase planes obtained in both ventricles in the rat heart in situ. Time and value of dP/dt(min), and the time constant tau were measured at baseline and during variable RV afterload elevations, induced by beat-to-beat pulmonary trunk constrictions. RVP and left ventricular pressure (LVP) decays were divided into initial accelerative and subsequent decelerative phases separated by corresponding dP/dt(min). At baseline, LVP fall was decelerative during 4/5 of its course, whereas only 1/3 of RVP decay occurred in a decelerative fashion. During RV afterload elevations, the absolute value of RV-dP/dt(min) and RV-tau increased, whilst time to RV dP/dt(min) decreased. Concomitantly, the proportion of RVP decay following a decelerative course increased, so that in highly RV afterloaded heartbeats RVP fall became more similar to LVP fall. In conclusion, RVP and LVP decline have distinct patterns, their major portion being decelerative in the LV and accelerative in the RV. In the RV, dP/dt(min), tau and the proportional contribution of accelerative and decelerative phases for ventricular pressure fall are afterload-dependent. Consequently, tau evaluates a relatively much shorter segment of RVP than LVP fall.  相似文献   

12.
Left ventricular (LV) systolic torsion is a primary mechanism contributing to stroke volume (SV). We hypothesized that change in LV torsion parallels changes in global systolic performance during dyssynchrony and cardiac resynchronization therapy (CRT). Seven anesthetized open chest dogs had LV pressure-volume relationship. Apical, basal, and mid-LV cross-sectional echocardiographic images were studied by speckle tracking analysis. Right atrial (RA) pacing served as control. Right ventricular (RV) pacing simulated left bundle branch block. Simultaneous RV-LV free wall and RV-LV apex pacing (CRTfw and CRTa, respectively) modeled CRT. Dyssynchrony was defined as the time difference in peak strain between earliest and latest segments. Torsion was calculated as the maximum difference between the apical and basal rotation. RA pacing had minimal dyssynchrony (52 ± 36 ms). RV pacing induced dyssynchrony (189 ± 61 ms, P < 0.05). CRTa decreased dyssynchrony (46 ± 36 ms, P < 0.05 vs. RV pacing), whereas CRTfw did not (110 ± 96 ms). Torsion during baseline RA was 6.6 ± 3.7°. RV pacing decreased torsion (5.1 ± 3.6°, P < 0.05 vs. control), and reduced SV, stroke work (SW), and dP/dt(max) compared with RA (21 ± 5 vs. 17 ± 5 ml, 252 ± 61 vs. 151 ± 64 mJ, and 2,063 ± 456 vs. 1,603 ± 424 mmHg/s, respectively, P < 0.05). CRTa improved torsion, SV, SW, and dP/dt(max) compared with RV pacing (7.7 ± 4.7°, 23 ± 3 ml, 240 ± 50 mJ, and 1,947 ± 647 mmHg/s, respectively, P < 0.05), whereas CRTfw did not (5.1 ± 3.6°, 18 ± 5 ml, 175 ± 48 mJ, and 1,699 ± 432 mmHg/s, respectively, P < 0.05). LV torsion changes covaried across conditions with SW (y = 0.94x+12.27, r = 0.81, P < 0.0001) and SV (y = 0.66x+0.91, r = 0.81, P < 0.0001). LV dyssynchrony changes did not correlate with SW or SV (r = -0.12, P = 0.61 and r = 0.08, P = 0.73, respectively). Thus, we conclude that LV torsion is primarily altered by dyssynchrony, and CRT that restores LV performance also restores torsion.  相似文献   

13.
Factors known to influence left ventricular contractility include preload, afterload, circulating catecholamine concentration, efferent sympathetic discharge, and heart rate. Heart rate influences have been primarily determined in the dog, whereas the influence of heart rate in smaller mammals has not been determined. Eight pentobarbital-anesthetized rabbits were instrumented to measure electrocardiogram, heart rate, left ventricular pressure, end-diastolic pressure, dP/dt, and mean and pulsatile aortic pressures. Systematic bradycardia was induced by stimulating the peripheral end of the sectioned right vagus nerve. Between 293 and 235 beats/min, there was no change in (dP/dt)max as heart rate was decreased. Below this range there was a direct relationship between (dP/dt)max and heart rate. Preload remained unchanged down to 132 beats/min. There was a small but significant decrease in afterload (0.09 mmHg X beat-1 X min-1; 1 mmHg = 133.32 Pa) throughout the decrease in heart rate. Infusion of propranolol (2.0 mg/kg) produced no marked change in the heart rate - (dP/dt)max relationship, although both resting heart rate and (dP/dt)max were reduced. This study demonstrates that (dP/dt)max is not influenced by changes in heart rate above 235 beats/min in the pentobarbital-anesthetized rabbit. These results differ from findings in other animals, and demonstrate that species and heart rate ranges must be considered when drawing conclusions regarding (dP/dt)max as a reliable index of contractility.  相似文献   

14.
Tissue Doppler imaging (TDI) is effective in assessing right ventricular (RV) function, but the relationship between invasive measurements and RV-TDI remains unclear. We investigated the RV systolic function by using the TDI-derived systolic myocardial (Sa) velocity and myocardial performance index (MPI). Beagles (n = 7) were anesthetized in the right lateral recumbent position. A 3.5-Fr micromanometer-tipped catheter was placed in the RV to determine the hemodynamic changes. Dobutamine (5.0 and 10 microg.kg(-1).min(-1)) and esmolol (50 and 100 microg.kg(-1).min(-1)) were infused intravenously. Pulsed Doppler (PD) and TDI measurements were performed in the apical four-chamber view. Compared with baseline, the PD-MPI decreased significantly with the dobutamine infusion at 5 microg.kg(-1).min(-1) (P < 0.05). Both dobutamine infusions significantly decreased the TDI-MPI (P < 0.01, P < 0.05). Esmolol increased the PD- and TDI-MPI but not significantly. Dobutamine significantly increased the Sa velocity (both P < 0.001), whereas esmolol had no effect. The Sa velocity was strongly correlated with the peak positive derivative of the RV pressure (+dP/dt; r = 0.93). The negative correlation between the +dP/dt and TDI-MPI (r = -086) was greater that with the PD-MPI (r = -0.54). Stepwise regression analysis showed that the Sa velocity and PD-derived isovolumic contraction time were identified to predict the +dP/dt (r = 0.94, r(2) = 0.89; P < 0.001). We determined that the systolic myocardial velocity and TDI-MPI were strongly correlated with the RV contractility. These results suggest that the TDI-derived systolic myocardial velocity and MPI predict RV systolic function.  相似文献   

15.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

16.
17.
The positive effect of vitamin C on left ventricular (LV) inotropic responses to dobutamine, observed in patients with preserved LV function, is lost in heart failure (HF). We tested the hypothesis that in HF, endogenous nitric oxide (NO) opposes the positive effect of vitamin C on adrenergically stimulated contractility by examining the effects of vitamin C on dobutamine responses during NO synthase inhibition. In 11 HF patients, a micromanometer-tipped catheter was inserted into the LV and an infusion catheter was positioned in the left main coronary artery. The peak positive rate of change of LV pressure (LV +dP/dt) was measured in response to intravenous dobutamine (Dob-1). After recontrol, intracoronary N(G)-monomethyl-L-arginine (l-NMMA) was infused before reinfusion of dobutamine (L-NMMA + Dob-2). Finally, intracoronary vitamin C was infused in addition to intracoronary L-NMMA and dobutamine (L-NMMA + Dob-2 + vitamin C). Intracoronary L-NMMA alone had no effect on LV +dP/dt. After a stable inotropic response to intracoronary L-NMMA and dobutamine was established, the addition of intracoronary vitamin C resulted in a modest but significant increase in LV +dP/dt. The change in LV +dP/dt in response to dobutamine alone was 25 +/- 5%, with intracoronary L-NMMA, 27 +/- 6%, and with intracoronary L-NMMA plus vitamin C, 37 +/- 5% (P < 0.05 vs. Dob-1 and L-NMMA + Dob-2). These findings demonstrate that an interaction between endogenous NO and redox environment exists and exerts some influence on stimulated contractility in HF.  相似文献   

18.
Mice are a widely used animal model for investigating cardiovascular disease. Novel technologies have been used to quantify left ventricular function in this species, but techniques appropriate for determining right ventricular (RV) function are less well demonstrated. Detecting RV dysfunction is critical to assessing the progression of pulmonary vascular diseases such as pulmonary hypertension. We used an admittance catheter to measure pressure-volume loops in anesthetized, open-chested mice before and during vena cava occlusion. Mice exposed to chronic hypoxia for 10 days, which causes hypoxia-induced pulmonary hypertension (HPH), were compared with control (CTL) mice. HPH resulted in a 27.9% increase in RV mass (P < 0.005), a 67.5% increase in RV systolic pressure (P < 0.005), and a 61.2% decrease in cardiac output (P < 0.05). Preload recruitable stroke work (PRSW) and slope of the maximum derivative of pressure (dP/dt(max))-end-diastolic volume (EDV) relationship increased with HPH (P < 0.05). Although HPH increased effective arterial elastance (E(a)) over fivefold (from 2.7 ± 1.2 to 16.4 ± 2.5 mmHg/μl), only a mild increase in the ventricular end-systolic elastance (E(es)) was observed. As a result, a dramatic decrease in the efficiency of ventricular-vascular coupling occurred (E(es)/E(a) decreased from 0.71 ± 0.27 to 0.35 ± 0.17; P < 0.005). Changes in cardiac reserve were evaluated by dobutamine infusion. In CTL mice, dobutamine significantly enhanced E(es) and dP/dt(max)-EDV but also increased E(a), causing a decrease in E(es)/E(a). In HPH mice, slight but nonsignificant decreases in E(es), PRSW, dP/dt(max)-EDV, and E(a) were observed. Thus 10 days of HPH resulted in RV hypertrophy, ventricular-vascular decoupling, and a mild decrease in RV contractile reserve. This study demonstrates the feasibility of obtaining RV pressure-volume measurements in mice. These measurements provide insight into ventricular-vascular interactions healthy and diseased states.  相似文献   

19.
It has been suggested that oxidative stress contributes to impaired left ventricular (LV) contractility in the setting of heart failure (HF). To test this hypothesis, we studied the effect of an antioxidant on contractility at rest and in response to dobutamine in 10 HF patients. We hypothesized that vitamin C would augment contractility in HF and that this effect would be of a greater magnitude in HF patients compared with patients with normal LV (NLV) function. Data from 10 patients with NLV function who participated in this study are included in this report and have been published elsewhere. A micromanometer-tipped catheter was introduced into the LV. In the experimental protocol, an infusion catheter was positioned in the left main coronary artery. The peak positive rate of change of LV pressure (LV +dP/dt) was measured in response to the intravenous infusion of dobutamine before and during the intracoronary infusion of vitamin C (96 mg/min). Vitamin C had no effect on basal LV +dP/dt in either HF or NLV groups. The infusion of vitamin C augmented the LV +dP/dt response to dobutamine by 22 +/- 4% in the NLV function group. In contrast, vitamin C had no effect on the inotropic response to dobutamine in the HF group. In the control protocol, without vitamin C, no differences were observed between responses to two sequential dobutamine infusions in either group (HF, n = 11; NLV, n = 9). Therefore, a positive effect of vitamin C on contractility was limited to patients with NLV function. The absence of this effect in HF patients may suggest that normal redox responsiveness is lost in this disease state.  相似文献   

20.
Measurement of left ventricular (LV) function is often overlooked in murine studies, which have been used to analyze the effects of genetic manipulation on cardiac phenotype. The goal of this study was to address the effects of changes in LV contractility on indexes of contractility in mice. LV function was assessed in vivo in closed-chest mice by echocardiography and by LV catheterization using a conductance pressure-volume (P-V) catheter with three different interventions that alter contractility by 1) atrial pacing to increase inotropy by augmentation of the force-frequency relation (modest increment of inotropy), 2) dobutamine to maximize inotropy, and 3) esmolol infusion to decrease contractility. Load-independent parameters derived from P-V relations, such as slope of end-systolic P-V relations (ESPVR) and slope of the first maximal pressure derivative over time (dP/dt(max))-end-diastolic volume relation (dP/dt-EDV), and standard echocardiographic parameters were measured. The dP/dt-EDV changed the most among parameters after atrial pacing and dobutamine infusion (percent change, 162.8 +/- 95.9% and 271.0 +/- 44.0%, respectively). ESPVR was the most affected by a decrease in LV contractility during esmolol infusion (percent change, -49.8 +/- 8.3%). However, fractional shortening failed to detect changes in contractility during atrial pacing and esmolol infusion and its percent change was <20%. This study demonstrated that contractile parameters derived from P-V relations change the most during a change in LV contractility and should therefore best detect a small change in contractility in mice. Heart rate has a modest but significant effect on P-V relationship-derived indexes and must be considered in the evaluation of murine cardiac physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号