首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.  相似文献   

2.
3.
Two alternative hypotheses aim to predict the wobble nucleotide of tRNA anticodons in mitochondrion. The codon-anticodon adaptation hypothesis predicts that the wobble nucleotide of tRNA anticodon should evolve toward maximizing the Watson-Crick base pairing with the most frequently used codon within each synonymous codon family. In contrast, the wobble versatility hypothesis argues that the nucleotide at the wobble site should be occupied by a nucleotide most versatile in wobble pairing, i.e., the wobble site of the tRNA anticodon should be G for NNY codon families and U for NNR and NNN codon families (where Y stands for C or U, R for A or G, and N for any nucleotide). We examined codon usage and anticodon wobble sites in 36 fungal genomes to evaluate these two alternative hypotheses and identify exceptional cases that deserve new explanations. While the wobble versatility hypothesis is generally supported, there are interesting exceptions involving tRNA(Arg) translating the CGN codon family, tRNA(Trp) translating the UGR codon family, and tRNA(Met) translating the AUR codon family. Our results suggest that the potential to suppress stop codons, the historical inertia, and the conflict between translation initiation and elongation can all contribute to determining the wobble nucleotide of tRNA anticodons.  相似文献   

4.
Crick's wobble theory states that some specific pairs between the bases at the first position of the anticodon (position 34) and the third position of the codon (position III) are allowed and the others are disallowed during the correct codon recognition. However, later researches have shown that the pairing rule, or the wobble rule, is different from the supposed one. Despite the continuing efforts including computer-aided model building studies and analyses of three-dimensional structures in the crystals of the ribosomes, the structural backgrounds of the wobble rule are still unclear. Here, I classify the possible pairs into 6 classes according to the increases accompanying the formation of the pairs in the potential productivity of the decoding complex on the basis of a simple model that was originally proposed previously and is refined here. In the model, the conformation with the base at position 34 displaced toward the minor groove side from the position for the Watson-Crick pairs is supposed to be equivalent to the conformation with the Watson-Crick pairs. It is also reasoned and supposed that some weak pairs may sometimes be allowed depending on the structural context. It is demonstrated that most of the experimental results reported so far are consistent with the model. I discuss on which experimental facts can be reasoned with the model and which need further explanations. I expect that the model will be a good basis for further understanding of the wobble rule and its structural backgrounds.  相似文献   

5.
M V Rodnina  R Fricke  L Kuhn    W Wintermeyer 《The EMBO journal》1995,14(11):2613-2619
The mechanisms by which elongation factor Tu (EF-Tu) promotes the binding of aminoacyl-tRNA to the A site of the ribosome and, in particular, how GTP hydrolysis by EF-Tu is triggered on the ribosome, are not understood. We report steady-state and time-resolved fluorescence measurements, performed in the Escherichia coli system, in which the interaction of the complex EF-Tu.GTP.Phe-tRNAPhe with the ribosomal A site is monitored by the fluorescence changes of either mant-dGTP [3'-O-(N-methylanthraniloyl)-2-deoxyguanosine triphosphate], replacing GTP in the complex, or of wybutine in the anticodon loop of the tRNA. Additionally, GTP hydrolysis is measured by the quench-flow technique. We find that codon-anticodon interaction induces a rapid rearrangement within the G domain of EF-Tu around the bound nucleotide, which is followed by GTP hydrolysis at an approximately 1.5-fold lower rate. In the presence of kirromycin, the activated conformation of EF-Tu appears to be frozen. The steps following GTP hydrolysis--the switch of EF-Tu to the GDP-bound conformation, the release of aminoacyl-tRNA from EF-Tu to the A site, and the dissociation of EF-Tu-GDP from the ribosome--which are altogether suppressed by kirromycin, are not distinguished kinetically. The results suggest that codon recognition by the ternary complex on the ribosome initiates a series of structural rearrangements resulting in a conformational change of EF-Tu, possibly involving the effector region, which, in turn, triggers GTP hydrolysis.  相似文献   

6.
The origin of the genetic code may be attributed to a postulated prebiological stereochemistry in which amino acid dimers, the trans -R,R'-diketopiperazines, interacted with prototype codon and anticodon nucleotide sequences. An intricately coupled stereochemistry is formulated which displays a binary logic for amino acid-codon recognition. It is shown that the diketopiperazine ring system can be inserted between any terminal pair of base paired nucleotides in a codon-anticodon structure with exact registration of complementary hydrogen bonding functional groups. This yields a codon-dimer-anticodon structure in which each amino acid residue is projected towards and interacts with a particular sequence of vicinal nucleotides on either codon or anticodon. The projection direction and the sequence of nucleotides encountered is a strongly coupled function of the choice of codon terminal nucleotide and the handedness of the amino acid. The reciprocal chemical nature of the complementary base pairs drives the selection of dimers containing quite dissimilar and chirally opposed amino acids. Application of the stereochemical model to the in vivo system leads to a general correlation for amino acid-codon assignments. The genetic code is restated in terms of the dimers selected. The profound symmetry of the code is elucidated and this proves useful for correlative and predictive purposes.  相似文献   

7.
A modified nucleotide on the 3'-side of the anticodon loop of tRNA is one of the most important structure element regulating codon-anticodone interaction on the ribosome owing to the stacking interaction with the stack of codon-anticodon bases. The presence and identity (pyrimidine, purine or modified purine) of this nucleotide has an essential influence on the energy of the stacking interaction on A- and P-sites of the ribosome. There is a significant influence of the 37-modification by itself on the P-site, whereas there is no such one on the A-site of the ribosome. Comparison of binding enthalpies of tRNA interactions on the P- or A-site of the ribosome with the binding enthalpies of the complex of two tRNAs with the complementary anticodones suggests that the ribosome by itself significantly endows in the thermodynamics of codon-anticodon complex formation. It happens by additional ribosomal interactions with the molecule of tRNA or indirectly by the stabilization of codon-anticodon conformation. In addition to the stacking, tRNA binding in the A and P sites is futher stabilized by the interactions involving some magnesium ions. The number of them involved in those interactions strongly depends on the nucleotide identity in the 37-position of tRNA anticodon loop.  相似文献   

8.
A novel strategy for the incorporation of nonnatural amino acids into proteins was developed by using five-base codon-anticodon pairs. The streptavidin mRNA containing five-base codon CGGUA and the chemically aminoacylated tRNA with five-base anticodon UACCG were prepared, and added into E. coli in vitro translation system. As a result, the nonnatural amino acid was successfully incorporated into desired position of the protein. Other five-base codons CGGN1N2, where N1 and N2 indicate one of four nucleotides, were also available for the incorporation of the nonnatural amino acid.  相似文献   

9.
Ogle JM  Murphy FV  Tarry MJ  Ramakrishnan V 《Cell》2002,111(5):721-732
A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.  相似文献   

10.
Yu H  Li Q 《PloS one》2011,6(1):e16147

Background

Animal mitochondrial genomes typically encode one tRNA for each synonymous codon family, so that each tRNA anticodon essentially has to wobble to recognize two or four synonymous codons. Several factors have been hypothesized to determine the nucleotide at the wobble site of a tRNA anticodon in mitochondrial genomes, such as the codon-anticodon adaptation hypothesis, the wobble versatility hypothesis, the translation initiation and elongation conflict hypothesis, and the wobble cost hypothesis.

Principal Findings

In this study, we analyzed codon usage and tRNA anticodon wobble sites of 29 marine bivalve mitochondrial genomes to evaluate features of the wobble nucleotides in tRNA anticodons. The strand-specific mutation bias favors G and T on the H strand in all the 29 marine bivalve mitochondrial genomes. A bias favoring G and T is also visible in the third codon positions of protein-coding genes and the wobble sites of anticodons, rejecting that codon usage bias drives the wobble sites of tRNA anticodons or tRNA anticodon bias drives the evolution of codon usage. Almost all codon families (98.9%) from marine bivalve mitogenomes support the wobble versatility hypothesis. There are a few interesting exceptions involving tRNATrp with an anticodon CCA fixed in Pectinoida species, tRNASer with a GCU anticodon fixed in Mytiloida mitogenomes, and the uniform anticodon CAU of tRNAMet translating the AUR codon family.

Conclusions/Significance

These results demonstrate that most of the nucleotides at the wobble sites of tRNA anticodons in marine bivalve mitogenomes are determined by wobble versatility. Other factors such as the translation initiation and elongation conflict, and the cost of wobble translation may contribute to the determination of the wobble nucleotide in tRNA anticodons. The finding presented here provides valuable insights into the previous hypotheses of the wobble nucleotide in tRNA anticodons by adding some new evidence.  相似文献   

11.
12.
During protein synthesis, interactions between the decoding center of the ribosome and the codon-anticodon complexes maintain translation accuracy. Correct aminoacyl-tRNAs induce the ribosome to shift into a "closed" conformation that both blocks tRNA dissociation and accelerates the process of tRNA acceptance. As part of the ribosomal recognition of cognate tRNAs, the rRNA nucleotides G530 and A1492 form a hydrogen-bonded pair that interacts with the middle position of the codon.anticodon complex and recognizes correct Watson-Crick base pairs. Exchanging these two nucleotides (A530 and G1492) would not disrupt these interactions, suggesting that such a double mutant ribosome might properly recognize tRNAs and support viability. We find, however, that exchange mutants retain little ribosomal activity. We suggest that even though the exchanged nucleotides might function properly during tRNA recruitment, they might disrupt one or more other functions of the nucleotides during other stages of protein synthesis.  相似文献   

13.
The modification of RNA nucleotide bases, a fundamental process in all cells, alters the chemical and physical properties of RNA molecules and broadly impacts the physiological properties of cells. tRNA molecules are by far the most diverse-modified RNA species within cells, containing as a group >80% of the known 96 chemically unique nucleic acid modifications. The greatest varieties of modifications are located on residue 37 and play a role in ensuring fidelity and efficiency of protein synthesis. The enzyme dimethylallyl (Delta(2)-isopentenyl) diphosphate:tRNA transferase catalyzes the addition of a dimethylallyl group to the exocyclic amine nitrogen (N6) of A(37) in several tRNA species. Using a 17 residue oligoribonucleotide corresponding to the anticodon arm of Escherichia coli tRNA(Phe), we have investigated the structural and dynamic changes introduced by the dimethylallyl group. The unmodified RNA molecule adopts stem-loop conformation composed of seven base-pairs and a compact three nucleotide loop. This conformation is distinctly different from the U-turn motif that characterizes the anticodon arm in the X-ray crystal structure of the fully modified yeast tRNA(Phe). The adoption of the tri-nucleotide loop by the purine-rich unmodified tRNA(Phe) anticodon arm suggests that other anticodon sequences, especially those containing pyrimidine bases, also may favor a tri-loop conformation. Introduction of the dimethylallyl modification increases the mobility of nucleotides of the loop region but does not dramatically alter the RNA conformation. The dimethylallyl modification may enhance ribosome binding through multiple mechanisms including destabilization of the closed anticodon loop and stabilization of the codon-anticodon helix.  相似文献   

14.
H Grosjean  W Fiers 《Gene》1982,18(3):199-209
By considering the nucleotide sequence of several highly expressed coding regions in bacteriophage MS2 and mRNAs from Escherichia coli, it is possible to deduce some rules which govern the selection of the most appropriate synonymous codons NNU or NNC read by tRNAs having GNN, QNN or INN as anticodon. The rules fit with the general hypothesis that an efficient in-phase translation is facilitated by proper choice of degenerate codewords promoting a codon-anticodon interaction with intermediate strength (optimal energy) over those with very strong or very weak interaction energy. Moreover, codons corresponding to minor tRNAs are clearly avoided in these efficiently expressed genes. These correlations are clearcut in the normal reading frame but not in the corresponding frameshift sequences +1 and +2. We hypothesize that both the optimization of codon-anticodon interaction energy and the adaptation of the population to codon frequency or vice versa in highly expressed mRNAs of E. coli are part of a strategy that optimizes the efficiency of translation. Conversely, codon usage in weakly expressed genes such as repressor genes follows exactly the opposite rules. It may be concluded that, in addition to the need for coding an amino acid sequence, the energetic consideration for codon-anticodon pairing, as well as the adaptation of codons to the tRNA population, may have been important evolutionary constraints on the selection of the optimal nucleotide sequence.  相似文献   

15.
The modified nucleotide 3′ of the tRNA anticodon is an important structural element that regulates the codon-anticodon interaction in the ribosome by stacking with codon-anticodon bases. The presence and identity (pyrimidine, purine, or modified purine) of this nucleotide significantly affects the energy of stacking in the A and P sites of the ribosome. Modification of nucleotide 37 does not contribute to stacking in the A site of the 70S ribosome, while its effect is substantial in the P site. The enthalpies of tRNA interactions with the A and P sites in the ribosome are similar and considerably lower than the enthalpy of the interactions of two tRNAs with the cognate anticodons in solution, suggesting that the ribosome contributes to the enthalpy-related portion of the free energy of tRNA binding by directly forming additional interactions with tRNA or by indirectly stabilizing the conformation of the codon-anticodon complex. In addition to stacking, tRNA binding in the A and P sites is further stabilized by interactions that involve magnesium ions. The number of ions involved in the formation of the tRNA-ribosome complex depends on the identity of tRNA nucleotide 37.  相似文献   

16.
Novel amber suppressor tRNAs of mammalian origin.   总被引:6,自引:1,他引:5       下载免费PDF全文
R P Valle  M D Morch    A L Haenni 《The EMBO journal》1987,6(10):3049-3055
Two amber suppressor tRNAs have been isolated from calf liver. They are different from previously identified naturally occurring amber suppressors of eukaryotes in so far as they are neither tRNATyr nor tRNAGln. They are leucine iso-acceptors and their nucleotide sequence indicates that they harbour a CAA and a CAG anticodon respectively. Both species are functional as amber suppressors as demonstrated by readthrough of the amber codon which terminates the 126 kd protein gene of tobacco mosaic virus RNA. The results bring new information in the discussion of codon-anticodon recognition and regulation of termination in eukaryotic protein synthesis.  相似文献   

17.
18.
Xia X 《Gene》2005,345(1):13-20
The H-strand of vertebrate mitochondrial DNA is left single-stranded for hours during the slow DNA replication. This facilitates C-->U mutations on the H-strand (and consequently G-->A mutations on the L-strand) via spontaneous deamination which occurs much more frequently on single-stranded than on double-stranded DNA. For the 12 coding sequences (CDS) collinear with the L-strand, NNY synonymous codon families (where N stands for any of the four nucleotides and Y stands for either C or U) end mostly with C, and NNR and NNN codon families (where R stands for either A or G) end mostly with A. For the lone ND6 gene on the other strand, the codon bias is the opposite, with NNY codon families ending mostly with U and NNR and NNN codon families ending mostly with G. These patterns are consistent with the strand-specific mutation bias. The codon usage biased towards C-ending and A-ending in the 12 CDS sequences affects the codon-anticodon adaptation. The wobble site of the anticodon is always G for NNY codon families dominated by C-ending codons and U for NNR and NNN codon families dominated by A-ending codons. The only, but consistent, exception is the anticodon of tRNA-Met which consistently has a 5'-CAU-3' anticodon base-pairing with the AUG codon (the translation initiation codon) instead of the more frequent AUA. The observed CAU anticodon (matching AUG) would increase the rate of translation initiation but would reduce the rate of peptide elongation because most methionine codons are AUA, whereas the unobserved UAU anticodon (matching AUA) would increase the elongation rate at the cost of translation initiation rate. The consistent CAU anticodon in tRNA-Met suggests the importance of maximizing the rate of translation initiation.  相似文献   

19.
20.
Using a protein synthesizing in vitro system programmed with MS 2-RNA, the relative efficiency (in the presence of each other) of valine tRNAs with the anticodons U*AC (U* represents 5-oxyacetic acid uridine monophosphate), GAC, and IAC to read the valine codons was investigated. An anticodon which can read all three positions of the codon according to the rules of Watson-Crick base-pairing and the wobble hypothesis is an order of magnitude more efficient than an anticodon which misreads the codon by reading only the first two positions and presumably disregards the third nucleotide of the codon. There are two seeming exceptions to this behavior: the anticodon U*AC reads the codon GUU quite efficiently and IAC is as effective as U*AC in reading the codon GUG. The significance of these exceptions is evaluated with respect to the organization and evolution of the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号