首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Spangrude GJ 《BioTechniques》2003,35(6):1273-1279
This perspective summarizes several important advances in hematopoietic stem cell (HSC) biology in the past few years and places these advances in the context of future directions in stem cell research. The potential utility of stem cells for gene therapy, tissue engineering, and the treatment of neurological and other forms of disease is simply too significant to ignore, and yet our knowledge and ability to deliver these forms of therapy in a safe and efficacious manner will require additional advances in the understanding of the basic biology of stem cells.  相似文献   

2.
The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.  相似文献   

3.
Targeted gene modification for gene therapy of stem cells   总被引:1,自引:0,他引:1  
Ideally, gene therapy would correct the specific gene defect without adding potentially harmful extraneous DNA sequences. Such correction can be obtained with homologous recombination between input DNA sequences and identical (homologous) sequences in the genomic target gene. The development of techniques for obtaining virtually pure populations of hematopoietic stem cells should permit the use of the highly efficient nuclear microinjection methods for transfer of DNA. These techniques combined with new highly sensitive methods for detecting cells with the specified genetic modification of nonexpressed genes would make homologous recombination-mediated gene therapy feasible for hematopoietic stem cells. These advances are reviewed with particular emphasis on approaches to targeted gene modification of hematopoietic stem cells and speculation on directions for future research.  相似文献   

4.
Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential.  相似文献   

5.
脂肪源性干细胞的多向分化潜力及应用前景   总被引:1,自引:0,他引:1  
脂肪组织中含有一类具有多向分化潜力的细胞,即脂肪源性干细胞,简称脂肪干细胞。其生物学性质与骨髓间充质干细胞相类似,并可向脂肪、骨、软骨、肌肉、内皮、造血、肝、胰岛和神经等多种细胞方向分化。由于脂肪组织在人体内储量丰富,获取简便创伤小,在组织工程、器官修复、基因治疗等方面都有着广阔的应用前景,因此脂肪干细胞已成为继骨髓间充质干细胞后干细胞领域另一个备受关注的热点。通过以分析脂肪干细胞的多向分化潜力,综述了这一领域最新的研究进展,并就其应用前景及目前研究中一些争议问题进行了探讨。  相似文献   

6.
脂肪组织中含有一类具有多向分化潜力的细胞,即脂肪源性干细胞,简称脂肪干细胞。其生物学性质与骨髓间充质干细胞相类似,并可向脂肪、骨、软骨、肌肉、内皮、造血、肝、胰岛和神经等多种细胞方向分化。由于脂肪组织在人体内储量丰富,获取简便创伤小,在组织工程、器官修复、基因治疗等方面都有着广阔的应用前景,因此脂肪干细胞已成为继骨髓间充质干细胞后干细胞领域另一个备受关注的热点。通过以分析脂肪干细胞的多向分化潜力,综述了这一领域最新的研究进展,并就其应用前景及目前研究中一些争议问题进行了探讨  相似文献   

7.
Ex vivo gene transfer and correction for cell-based therapies   总被引:1,自引:0,他引:1  
Cell-based therapies are fast-growing forms of personalized medicine that make use of the steady advances in stem cell manipulation and gene transfer technologies. In this Review, I highlight the latest developments and the crucial challenges for this field, with an emphasis on haematopoietic stem cell gene therapy, which is taken as a representative example given its advanced clinical translation. New technologies for gene correction and targeted integration promise to overcome some of the main hurdles that have long prevented progress in this field. As these approaches marry with our growing capacity for genetic reprogramming of mammalian cells, they may fulfil the promise of safe and effective therapies for currently untreatable diseases.  相似文献   

8.
PURPOSE OF REVIEW: Atherosclerosis is a chronic inflammatory disease that is the primary cause of morbidity and mortality in the developed world. Many studies have shown that macrophages and T-cells play critical roles in multiple aspects of the pathogenesis of the disease. Given that these cells are ultimately derived from bone marrow precursors, the concept of performing gene therapy for atherosclerosis through the retroviral transduction of hematopoietic stem cells has received much attention. This review will highlight recent advances that will help bring this goal closer. RECENT FINDINGS: The clinical application of retroviral gene transfer into hematopoietic stem cells has been hampered, in part, by the absence of vectors that can direct long-lasting, cell-type specific gene expression. In this review we will detail recent developments in the design of novel retroviral and lentiviral vectors that appear to overcome these problems, offering approaches to express therapeutic genes in specific cell-types within atherosclerotic lesions. We will also highlight advances in our understanding of the pathogenesis of atherosclerosis that may offer new gene therapeutic targets. SUMMARY: The use of retroviral transduction of hematopoietic stem cells for treatment of patients with atherosclerosis still remains a long-term goal. However, the recent development of retroviral vectors capable of directing expression to specific cell types within the lesion will allow more targeted therapeutic strategies to be devised. In addition, these vectors will provide powerful experimental tools to further our understanding of the pathogenesis of the disease.  相似文献   

9.
K Ozawa 《Human cell》1991,4(1):13-17
Gene therapy, which is treatment of diseases by introducing normal genes into the body, is becoming feasible as the result of advances in genetic engineering. The hematopoietic stem cells have been considered as the appropriate target for gene transfer in many genetic diseases for which allogeneic bone marrow transplantation has been employed successfully. However, there are still many problems to be solved. In particular, expression from retrovirally transduced genes in bone marrow cells has been transient and unstable. On the other hand, an alternative approach to somatic cell gene therapy using nonhematopoietic cells, including skin fibroblasts, endothelial cells, keratinocytes, and lymphocytes, has been shown to possess several advantages. This kind of approach is usually applied to supplementation therapy in not only hereditary disorders but also various acquired diseases, such as cancer or infectious diseases. Recently, clinical application of gene transfer into lymphocytes to treat cancer and immunodeficiency have been approved at NIH (USA). The trial could represent the start of a new era in molecular medicine.  相似文献   

10.
Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.  相似文献   

11.
The discovery that mature cells can be reprogrammed to become pluripotent and the development of engineered endonucleases for enhancing genome editing are two of the most exciting and impactful technology advances in modern medicine and science. Human pluripotent stem cells have the potential to establish new model systems for studying human developmental biology and disease mechanisms. Gene correction in patient-specific iPSCs can also provide a novel source for autologous cell therapy. Although historically challenging, precise genome editing in human iPSCs is becoming more feasible with the development of new genome-editing tools, including ZFNs, TALENs, and CRISPR. iPSCs derived from patients of a variety of diseases have been edited to correct disease-associated mutations and to generate isogenic cell lines. After directed differentiation, many of the corrected iPSCs showed restored functionality and demonstrated their potential in cell replacement therapy. Genome-wide analyses of gene-corrected iPSCs have collectively demonstrated a high fidelity of the engineered endonucleases. Remaining challenges in clinical translation of these technologies include maintaining genome integrity of the iPSC clones and the differentiated cells. Given the rapid advances in genome-editing technologies, gene correction is no longer the bottleneck in developing iPSC-based gene and cell therapies; generating functional and transplantable cell types from iPSCs remains the biggest challenge needing to be addressed by the research field.  相似文献   

12.
K Ozawa 《Human cell》1999,12(1):57-61
A hematopoietic stem cell is considered to be one of the ideal targets for gene therapy, and there is expectation that gene therapy will be established based on the technology of hematopoietic stem cell transplantation. However, in recent clinical trials of stem cell gene therapy for monogenic diseases, significant clinical improvement has not been reported. One of the main obstacles is the low efficiency of gene transfer into hematopoietic stem cells. Many investigators have been trying to improve the transduction efficiency to the clinically applicable level. Another approach to solve this problem is to develop the method for selective expansion of transduced hematopoietic stem cells in vivo. We are currently developing novel regulatory genes (selective amplifier genes) for stem cell gene therapy.  相似文献   

13.
Recently a growing attention in scientific community has been gathered on potential application of mesenchymal stem cells (MSCs) in various fields of medicine. Owing to the fact that they can be easily isolated from different sources, and simply proliferated in large quantities while keeping their original biological characteristics, they can be successfully used as cell-based therapeutics. Engineering MSCs and other type of stem cells to be carriers of therapeutic agents is a new tactic in the targeted gene and cell therapy of cancers and degenerative diseases. Various useful properties of MSCs including tropism toward tumor/injury site(s), weakly immunogenic, production of anti-inflammatory molecules, and safety against normal tissues have made them prone for regenerative medicine, targeted therapy and treating injured tissues, and immunological abnormalities. In this review, we introduce latest advances, methods, and applications of MSCs in gene therapy of various malignant organ disorders. Additionally, we will cover the problems and challenges which researchers have faced with when trying to translate their basic experimental findings in MSCs research to clinically applicable therapeutics.  相似文献   

14.
Recent advances in gene transfer in human hematopoietic cells, combined with a better understanding of the genetic aspects of several immunodeficiencies, has offered new opportunities in the domain of gene therapy. Severe combined immunodeficiency (SCID) appear to represent a good model for the application of gene therapy, combining an expected selective advantage for transduced cells, an absence of immunological response to the vector and/or the therapeutic transgene, together with accessibility to hematopoietic stem cells (HSC). Ex vivo retroviral transduction of a therapeutic transgene in HSC prior to transplantation appears to be a particularly effective and long‐lasting means of restoring the expression of a mutated gene in the lymphoid lineage. Furthermore, encouraging therapeutic benefits as a result of a gene therapy protocol for the treatment of X‐linked severe combined immunodeficiencies (SCID‐X1) invites many questions as to the reasons for this therapeutic benefit. This review outlines the results that have been achieved in gene therapy for SCID‐X1, ADA‐SCID as well as other types of SCID, and discusses the possible relationship between the physiopathology of each disease and the success of relevant trials. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Planarians can regenerate using a pluripotent stem cell system. This phenomenon provides a unique opportunity to understand gene regulation in the process of differentiation from pluripotent stem cells. Recent studies have made significant advances in our understanding of the pluripotent stem cell system in this model. In particular, a gene knockdown method by RNA interference enabled great progress in identifying genes involved in regeneration and stem cell regulation.  相似文献   

16.
Sickle cell disease (SCD) is one of the most common life-threatening monogenic diseases affecting millions of people worldwide. Allogenic hematopietic stem cell transplantation is the only known cure for the disease with high success rates, but the limited availability of matched sibling donors and the high risk of transplantation-related side effects force the scientific community to envision additional therapies. Ex vivo gene therapy through globin gene addition has been investigated extensively and is currently being tested in clinical trials that have begun reporting encouraging data. Recent improvements in our understanding of the molecular pathways controlling mammalian erythropoiesis and globin switching offer new and exciting therapeutic options. Rapid and substantial advances in genome engineering tools, particularly CRISPR/Cas9, have raised the possibility of genetic correction in induced pluripotent stem cells as well as patient-derived hematopoietic stem and progenitor cells. However, these techniques are still in their infancy, and safety/efficacy issues remain that must be addressed before translating these promising techniques into clinical practice.  相似文献   

17.
Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments.Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers(e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.  相似文献   

18.
Relapse after current treatment is one of the main limitations to the complete cure of leukemia, and a concept that leukemia stem cell (LSC) is the major cause of relapse has been proposed. LSCs are derived from normal hematopoietic stem cells (HSCs), residing at the apex of leukemia cells and hiding in the bone marrow (BM) niche to evade chemotherapy. Novel therapy is strongly needed based on the unique features of LSCs to directly target these cells. MicroRNAs (miRNAs), a class of small non-coding RNAs, are now known to play important roles on cancer stem cell maintenance and differentiation. Because of the ability of miRNAs to inactivate either specific genes or entire gene families, strategies based on differential expression levels of miRNAs in LSCs as dominant activators or suppressors of gene activity have emerged as promising new candidate approaches for eradicating LSCs. In this review, we highlight new findings regarding the roles of miRNAs in LSC maintenance of quiescence repression, self-renewal, surface marker targeting, and the LSCBM niche interaction. We also discuss recent advances and future challenges to use LSC specific miRNAs as potential therapeutic molecules in eradicating LSCs.  相似文献   

19.
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber''s congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt''s disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.  相似文献   

20.
The generation of human induced pluripotent stem cells (hiPSCs) opens a new avenue in regenerative medicine. However, transplantation of hiPSC-derived cells carries a risk of tumor formation by residual pluripotent stem cells. Numerous adaptive strategies have been developed to prevent or minimize adverse events and control the in vivo behavior of transplanted stem cells and their progeny. Among them, the application of suicide gene modifications, which is conceptually similar to cancer gene therapy, is considered an ideal means to control wayward stem cell progeny in vivo. In this review, the choices of vectors, promoters, and genes for use in suicide gene approaches for improving the safety of hiPSCs-based cell therapy are introduced and possible new strategies for improvements are discussed. Safety-enhancing strategies that can selectively ablate undifferentiated cells without inducing virus infection or insertional mutations may greatly aid in translating human pluripotent stem cells into cell therapies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号