首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The antitumour drug nitracrine [1-nitro-9-(dimethylaminopropylamino)acridine], known to be a potent frameshift mutagen in strains of Salmonella typhimurium, also strongly reverts the lacZ19124 frameshift marker in Escherichia coli. The results in E. coli indicate that nitracrine causes DNA damage which can be excised by the UvrA,B,C excinuclease, can generate mutations by a recA-dependent mechanism, and gives enhanced yields of mutants when plasmid pKM101 is present. Despite these observations, mutagenesis by nitracrine appears to be independent of the UmuC gene product, and hence nitracrine differs from most (but not all) other chemicals which generate mutations via the SOS response. Given that umuC mutants are about as mutable by nitracine as the wild-type parent strain, it is somewhat surprising that plasmid pKM101 causes an enhancement of nitracrine mutagenesis. Nevertheless, we have found that the observed enhancement of mutagenesis by pKM101 is a function of the mucB gene, normally assumed to be essentially homologous to the umuC gene.  相似文献   

2.
Chloroquine can be detected as a direct-acting mutagen in plate-incorporation assays using the excision-deficient Salmonella typhimurium strain TA97, but very much more effectively using the repair-proficient Escherichia coli strain DG1669 which carries the lacZ19124 marker. When tested at concentrations of 200-1000 micrograms/plate with strain DG1669, the mutagenicity of chloroquine is enhanced by the addition of Aroclor-induced rat-liver S9. Further experiments indicated that chloroquine-induced reversion frequencies were essentially identical in wild-type, recA, umuC and uvrC derivatives of DG1669, as well as in strains carrying the mutation enhancing plasmid pKM101, over a wide range of doses (0-1200 micrograms/plate). These results suggest that neither excision repair nor SOS-type repair are important in chloroquine-induced frameshift mutagenesis.  相似文献   

3.
The mutagenic potential of 9-[(3-dimethylaminopropyl)amino]-acridine and its 1-, 2-, 3- and 4-nitro derivatives was studied in several strains of Salmonella typhimurium carrying the frameshift marker hisC3076. The strains all carried deep rough (rfa) mutations, and were either wild-type with respect to DNA repair capacity or carried recA, uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without plasmid pKM101 were also studied. The des-nitro compound resembled 9 aminoacridine and other simple intercalating compounds. Both toxicity and mutagenesis were apparently unaffected by the uvrB and recA mutations or by the presence of plasmid pKM101. However, mutagenicity was reduced by the polA1 mutation, and virtually eliminated by the polA3 mutation. The drug was substantially more toxic in the latter, slightly more toxic in the former, of these polA- strains. Plasmid pKM101 enhanced mutagenesis and protected from toxicity in both polA1- and polA3- strains, although it did not restore either of these parameters to the level in the wild-type strain. The 2-nitro compound was generally similar to the des-nitro compound, except that it was considerably more toxic and apparently non-mutagenic in the recA-bearing strain. By contrast, mutagenicity of the 3- and 4-nitro compounds was enhanced by the uvrB mutation and by the presence of the plasmid. These compounds were highly toxic but non-mutagenic in the recA- strain, and showed some increased toxicity in polA1- and polA3- strains. The 1-nitro compound has been previously found to cross-link DNA. Unlike well-characterised cross-linkers such as mitomycin C it was highly mutagenic in the uvrB- strain, and this mutagenesis was enhanced by plasmid pKM101, but eliminated by the recA mutation. At high doses, where the drug was completely toxic towards uvrB- or recA-carrying strains, it became mutagenic in the DNA-repair-proficient strains. This 'high-dose' mutagenesis was enhanced by plasmid pKM101, but reduced by the polA1 mutation and almost eliminated by the polA3 mutation. Although there are several possible interpretations of these data, they are compatible with the suggestion that the lesion induced by high doses (but not by low doses) of nitracrine is a cross-link, but that this is not the major mutagenic lesion.  相似文献   

4.
The mutability induced by dioxidine in E. coli cells has been shown to be stringently dependent on a function of chromosomal umuC+ gene. Suppression of an umuC mutation by plasmids pKM101 or ColIb, restoring the dioxidine induced mutability, proves the possibility of umuC gene functional complementation by the plasmid muc+ genes.  相似文献   

5.
Cell killing and mutation induction in the lacI gene of Escherichia coli by cis-Pt(NH3)2Cl2 were studied in cells with different repair capacities, with and without pKM101. The presence of the plasmid pKM101 made repair-proficient cells more susceptible to killing by cis-Pt(NH3)2Cl2 and strongly enhanced mutation induction by that compound. Both effects were shown to be dependent upon excision repair. Characterization of the induced mutations in the lacI gene after cis-Pt(NH3)2Cl2 treatment of E. coli cells, by the LacI system, revealed that the mutagenic specificity of the Pt compound was strongly influenced by the presence of the pKM101 plasmid. With pKM101, 23% of the induced amber and ochre mutations resulted from substitutions at AT base pairs, whereas these mutations were hardly induced in cells without pKM101. These results suggest that pKM101-induced repair differs from normal SOS repair.  相似文献   

6.
The host-controlled K-restriction of unmodified phage lambda is ten to hundred-fold alleviated in the E. coli K12 strain, carring plasmid pKM101 of N-incompatibility group. By restriction mapping Tn5 insertion in pKM101, which reduced pKM101-mediated alleviation of K-restriction, was shown to by located within BglII-B-fragment approximately 9 kb anticlockwise from the EcoRI-site of pKM101. We have termed the gene(s) promoting the alleviation of K-restriction ARD (Alleviation of Restriction of DNA). It was shown that (i) plasmid pKM101-mediated alleviation of K-restriction did not depend on bacterial genes LexA, RecBC, umuC and plasmid gene muc; (ii) ard gene did not mediate EcoK type modification of DNA and did not enhance the modification activity of EcoK system in a way similar to that observed with RAL gene of phage lambda. Action of Ard gene of plasmid pKM101 is highly specific: alleviation of restriction of DNA lambda takes place only in K-strains of E. coli and is practically absent in B-strains and also in E. coli strains which have restricting enzymes of 11 type, EcoRI and EcoRIII.  相似文献   

7.
Plasmid pKM101, which carries muc genes that are analogous in function to chromosomal umu genes, protected Escherichia coli strains AB1157 uvrB+ umuC+, JC3890 uvrB umuC+, TK702 uvrB+ umuC and TK501 uvrB umuC against ultraviolet irradiation (UV). Plasmid pGW16, a derivative of pKM101 selected for its increased spontaneous mutator effect, also gave some protection to the UmuC-deficient strains, TK702 and TK501. However, it sensitised the wild-type strain AB1157 to low, but protected against high doses of UV, whilst sensitising strain JC3890 to all UV doses tested. Even though its UV-protecting effects varied, pGW16 was shown to increase both spontaneous and UV-induced mutation in all strains. Another derivative of pKM101, plasmid pGW12, was shown to have lost all spontaneous and UV-induced mutator effects and did not affect post-UV survival. Plasmids pKM101 and pGW16 increased post-UV DNA synthesis in strains AB1157 and TK702, whereas pGW12 had no effect. Similarly, the wild-type UV-protecting plasmids R46, R446b and R124 increased post-UV DNA synthesis in strain TK501, but the non-UV-protecting plasmids R1, RP4 and R6K had no effect. These results accord with the model for error-prone DNA repair that requires umu or muc gene products for chain elongation after base insertion opposite non-coding lesions. They also suggest that the UV-sensitizing effects of pGW16 on umu+ strains can be explained in terms of overactive DNA repair resulting in lethal, rather than repaired UV-induced lesions.  相似文献   

8.
When a mixture of N-nitrosomorpholine and S. typhimurium TA100 in saline was irradiated with near-ultraviolet light, mutagenesis of the bacteria took place. The same observation was made with S. typhimurium TA1535, E. coli WP2 uvrA, pKM101 and uvrA/pKM101. Several other nitrosamines showed ed the same, but weaker, effect. Evidence is presented to indicate that the mutagenicity arises from the cellular phosphate-mediated photochemical formation of direct-acting mutagen from the nitrosamine.  相似文献   

9.
A forward mutation assay in Salmonella typhimurium that selects for 5-fluoruracil (FU) resistance has been developed. The two genes possibly involved in FU resistance, the uracil phosphoribosyl transferase gene (upp) and the uracil transport protein (uraA), have been cloned from S. typhimurium and sequenced. One hundred percent of FU-resistant clones display sequence changes in the upp gene, indicating that its loss is the major mechanism involved in FU resistance. The spontaneous mutational spectra at the upp locus were then determined in two S. typhimurium strains, FU100 and FU1535, that differ only in the presence of pKM101 plasmid. The pKM101 plasmid provides error-prone replicative bypass of DNA lesions and renders FU100 more susceptible to induced mutagenesis. Fluctuation analysis of FU-resistant clones demonstrated a 10-fold higher spontaneous mutation rate at the upp locus in FU100 relative to FU1535. Over 300 independent FU-resistant clones were then used to generate the spectra at the upp locus in both the strains. Approximately 40% of all the mutations were base substitutions, present at the same relative percentage in both the strains. Frameshift mutations also accounted for approximately 40% of the total; however, their incidence was slightly elevated in FU100. The remaining mutations were larger insertions and deletions, which were both slightly elevated in FU1535. pKM101 significantly elevated the rate of all classes of mutations at the upp locus, with profound effects on A:T to T:A transversions and -2-base frameshift mutations. These initial mutational spectra at the upp locus reveal 147 mutable sites, or 23% of the total 627-base coding sequence and suggest that the target can detect a diverse spectrum of mutagenic events.  相似文献   

10.
A total of 23 chemicals--biphenyls, phenanthrenequinones and fluorenones--were tested for mutagenicity towards Salmonella typhimurium strains TA1538, TA1535 and TA98. SOS-inducing activity of the same chemicals was studied in terms of the SOS-inducing potency in Escherichia coli PQ37, using an automated instrument controlled by a dedicated computer program for the SOS Chromotest. Of the 23 chemicals studied 14 induced His+ revertants in S. typhimurium TA1538 hisD305 (-1 frameshift); none induced His+ reversions in TA1535 (base-pair substitution). The mutagenicity of the chemicals in S. typhimurium TA98 (pKM 101) was lower than in TA1538. There was a close correlation between mutagenicity and SOS-inducing activity of fluorenones and phenanthrenequinones. None of the biphenyls tested induced SOS response and this property does not depend upon the mutagenic activity of the chemicals. SOS Chromotest is particularly valid in detecting chemicals which give rise to base-pair substitutions through SOS induction. If positive results are obtained, the Salmonella assay may be omitted. However, this test cannot replace the Ames test especially for the primary screening of mutagenicity of chemicals with unknown structure.  相似文献   

11.
The ultraviolet (UV) and gamma radiation-induced reversion of the trpA21, trpA9813, and trpE9777 sequenced-frameshift mutations were studied in Escherichia coli K-12 with or without the plasmid pKM101. Radiation induced the reversion of all 3 frameshifts, and pKM101 enhanced this reversion 10-50-fold. Factors influencing the differential radiation revertability of frameshifts are discussed. The two most revertable frameshifts, trpE9777 and trpA9813, were used as probes to understand the role of the umuDC genes in radiation-induced frameshift reversion. Unlike the UV radiation-induced reversion of base-substitution mutations, the reversion of these frameshifts was not enhanced in a uvrA umuC strain by photoreactivation after a post-UV-irradiation incubation. The UmuDC proteins are suggested to have functions in the radiation induction of frameshifts that are more complex than are their functions in the induction of base substitutions.  相似文献   

12.
We examined the effects of host mutations affecting "SOS"-mediated UV light reactivation on the survival of bacteriophage T7 damaged by UV light or methyl methanesulfonate (MMS). Survival of T7 alkylated with MMS was not affected by the presence of plasmid pKM101 or by a umuC mutation in the host. The survival of UV light-irradiated T7 was similar in umuC+ and umuC strains but was slightly enhanced by the presence of pKM101. When phage survival was determined on host cells preirradiated with a single inducing dose of UV light, these same strains permitted higher survival than that seen with noninduced cells for both UV light- and MMS-damaged phage. The extent of T7 reactivation was approximately proportional to the UV light inducing dose inflicted upon each bacterial strain and was dependent upon phage DNA damage. Enhanced survival of T7 after exposure to UV light or MMS was also observed after thermal induction of a dnaB mutant. Thus, lethal lesions introduced by UV light or MMS are apparently repaired more efficiently when host cells are induced for the SOS cascade, and this inducible reactivation of T7 is umuC+ independent.  相似文献   

13.
Summary A tif-1 umuC36 double mutant of Escherichia coli was constructed. It has been found that the umuC36 mutation prevents both increased spontaneous mutagenesis and enhanced reactivation of UV-irradiated , phenomena normally observed in the tif-1 strain grown at 42°C. When the plasmid pKM101 was introduced into tif-1 umuC36, an elevated spontaneous reversion rate of the his-4 mutation observed at 30°C was further increased 6-fold at 42°C. This was accompanied by a 10-fold increase in the ability of tif-1umuC36 containing pKM101 and grown before infection at 42°C to reactivate UV-irradiated .  相似文献   

14.
We used bacterial mutation assays to assess the mutagenic and co-mutagenic effects of power frequency magnetic fields (MF). For the former, we exposed four strains of Salmonella typhimurium (TA98, TA100, TA1535, TA1537) and two strains of Escherichia coli (WP2 uvrA, WP2 uvrA/pKM101) to 50Hz, 14mT circularly polarized MF for 48h. All results were negative. For the latter, we treated S. typhimurium (TA98, TA100) and E. coli (WP2 uvrA, WP2 uvrA/pKM101) cells with eight model mutagens (N-ethyl-N'-nitro-N-nitrosoguanidine, 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide, 4-nitroquinoline-N-oxide, 2-aminoanthracene, N(4)-aminocytidine, t-butyl hydroperoxide, cumen hydroperoxide, and acridine orange) with and without the MF. The MF induced no significant, reproducible enhancement of mutagenicity. We also investigated the effect of MF on mutagenicity and co-mutagenicity of fluorescent light (ca. 900lx for 30min) with and without acridine orange on the most sensitive tester strain, E. coli WP2 uvrA/pKM101. Again, we observed no significant difference between the mutation rates induced with and without MF. Thus, a 50Hz, 14mT circularly polarized MF had no detectable mutagenic or co-mutagenic potential in bacterial tester strains under our experimental conditions. Nevertheless, some evidence supporting a mutagenic effect for power frequency MFs does exist; we discuss the potential mechanisms of such an effect in light of the present study and studies done by others.  相似文献   

15.
Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.  相似文献   

16.
A large range of acridines, including several anilinoacridines which are active as antitumour agents, have been studied for their ability to revert derivatives of Salmonella typhimurium strains carrying the frameshift marker hisC3076. The strains used all carried deep-rough (rfa) mutations, and were either wild-type with respect to DNA-repair capacity or carried uvrB, polA1 or polA3 (amber) mutations. Derivatives with and without the mutation-enhancing N group plasmid pKM101 were also used. 9-Aminoacridine and other acridines appeared similar to the anilinoacridines for the most part, in that frameshift mutagenesis and toxicity appeared to be unaffected by the uvrB mutation or by the presence of plasmid pKM101. Exceptions were ICR191, 3-NO2-acridine and 1- or 3-NO2-anilinoacridine derivatives in which mutagenesis was increased in uvrB strains and also when pKM101 was present. These compounds were slightly more toxic in the uvrB background, but less toxic when pKM101 was present in either the uvrB or wild-type backgrounds. Mutagenesis by most compounds was reduced by the polA1 mutation and virtually eliminated (except in the case of ICR191) by the polA3 mutation. Plasmid pKM101 occasionally enhanced mutagenesis in the polA1 strain, whereas in the polA3 it appeared to have no effect whatsoever. Again, there were no obvious differences in toxicity between Pol+ and Pol- strains.  相似文献   

17.
Patterns of reversion produced by ciprofloxacin, enoxacin and ofloxacin in Salmonella typhimurium strains carrying the hisG428 ochre mutation have been studied. These fluorinated quinolones produce a significant increase in reversion of this mutation, even when it is located on the chromosome. Nevertheless, reversion is higher when the hisG428 mutation is on the multicopy plasmid pAQ1 than when it is on the chromosome. Reversion of hisG428 induced by fluorinated quinolones is abolished both in a uvrB genetic background and in the absence of the plasmid pKM101. Therefore, mutagenesis produced by fluorinated quinolones in the Salmonella mutagenicity assay is significantly affected by both the excision repair and the error-prone repair systems. Furthermore, fluorinated quinolones are also detected as moderate mutagens with the base substitution hisG46 mutation when both repair systems are functional in the tester strain.  相似文献   

18.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

19.
Salmonella typhimurium strains with supX mutations are more sensitive than wild type to killing by ultraviolet (UV) irradiation. Studies with strains bearing the leuD21 mutation revealed that inactivation of the supX locus by a nonsense mutation or a deletion results in a complete lack of ability to produce induced Leu+ reversion mutations after UV irradiation. Suppression of the nonsense supX mutation or the presence of an Escherichia coli K-12 F'-borne supX+ allele restored the capacity for induced reversions and increased cell survival after UV irradiation. Introduction of plasmid pKM101 into supX mutant strains also restored their capacity for UV mutagenesis as well as increased survival. The possible nature of the supX gene product and mechanisms by which it may affect expression of the inducible SOS error-prone repair system are considered.  相似文献   

20.
Strains derived from Salmonella typhimurium LT-2, which are used as tester strains in mutagenicity assays, show significant changes in biochemical phenotypes. The presence of plasmid pKM101 in these strains greatly increases both the frequency of these shifts as well as the spectrum of phenotypes involved. It is suggested that in plasmid-free strains these variations reflect the effects of endogeneously induced mutations which are amplified in the absence of a functional uvrB gene product. In plasmid-containing strains this genetic drift may be promoted further by the pKM101-coded error-prone DNA repair system. The observation of a plasmid-mediated genetic drift lends support to the suggestion that transposons may contribute to the carcinogenic process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号