首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The immunoreceptor tyrosine-based inhibition motif (ITIM) is found in various membrane molecules such as CD22 and the low-affinity Fc receptor for IgG in B cells and the killer cell-inhibitory receptor and Ly-49 in NK cells. Upon tyrosine phosphorylation at the ITIMs, these molecules recruit SH2 domain-containing phosphatases such as SH2-containing tyrosine phosphatase-1 and negatively regulate cell activity. The B cell surface molecule CD72 carries an ITIM and an ITIM-like sequence. We have previously shown that CD72 is phosphorylated and recruits SH2-containing tyrosine phosphatase-1 upon cross-linking of the Ag receptor of B cells (BCR). However, whether CD72 modulates BCR signaling has not yet been elucidated. In this paper we demonstrate that expression of CD72 down-modulates both extracellular signal-related kinase (ERK) activation and Ca2+ mobilization induced by BCR ligation in the mouse B lymphoma line K46micromlambda, whereas BCR-mediated ERK activation was not reduced by the ITIM-mutated form of CD72. Moreover, coligation with CD72 with BCR reduces BCR-mediated ERK activation in spleen B cells of normal mice. These results indicate that CD72 negatively regulates BCR signaling. CD72 may play a regulatory role in B cell activation, probably by setting a threshold for BCR signaling.  相似文献   

3.
The major histocompatability class II heterodimer (class II) is expressed on the surface of both resting and activated B cells. Although it is clear that class II expression is required for Ag presentation to CD4(+) T cells, substantial evidence suggests that class II serves as a signal transducing receptor that regulates B cell function. In ex vivo B cells primed by Ag receptor (BCR) cross-linking and incubation with IL-4, or B cell lines such as K46-17 micromlambda, class II ligation leads to the activation of protein tyrosine kinases, including Lyn and Syk and subsequent phospholipase Cgamma-dependent mobilization of Ca(2+). In this study, experiments demonstrated reciprocal desensitization of class II and BCR signaling upon cross-linking of either receptor, suggesting that the two receptors transduce signals via common processes and/or effector proteins. Because class II and BCR signal transduction pathways exhibit functional similarities, additional studies were conducted to evaluate whether class II signaling is regulated by BCR coreceptors. Upon cross-linking of class II, the BCR coreceptors CD19 and CD22 were inducibly phosphorylated on tyrosine residues. Phosphorylation of CD22 was associated with increased recruitment and binding of the protein tyrosine phosphatase SHP-1. Similarly, tyrosine phosphorylation of CD19 resulted in recruitment and binding of Vav and phosphatidylinositol 3-kinase. Finally, co-cross-linking studies demonstrated that signaling via class II was either attenuated (CD22/SHP-1) or enhanced (CD19/Vav and phosphatidylinositol 3-kinase), depending on the coreceptor that was brought into close proximity. Collectively, these results suggest that CD19 and CD22 modulate class II signaling in a manner similar to that for the BCR.  相似文献   

4.
5.
Using CD45-deficient clones from the immature B cell line, WEHI-231, we previously demonstrated that CD45 selectively dephosphorylates the Src-family protein tyrosine kinase Lyn and inhibits its kinase activity. To further define the mechanisms of CD45 action on Lyn, we metabolically labeled Lyn from CD45-positive and -negative WEHI-231 cells and analyzed cyanogen bromide fragments by SDS-PAGE analysis. Phosphoamino acid analysis confirmed that Lyn is tyrosine phosphorylated with little serine or threonine phosphorylation. In CD45-negative cells, two bands at 8.2 and 4.1 kDa were phosphorylated in the absence of B cell Ag receptor (BCR) ligation. The 8.2-kDa band corresponded to a fragment containing the positive regulatory site (Tyr397), as assessed by its size and its phosphorylation in an in vitro kinase assay. The 4.1-kDa band was phosphorylated by COOH-terminal Src kinase, suggesting that it contains the COOH-terminal negative regulatory site (Tyr508). CD45 was also shown to dephosphorylate autophosphorylated Lyn in vitro. Thus, CD45 dephosphorylates not only the negative but also the positive regulatory tyrosine residues of Lyn. Furthermore, coimmunoprecipitations using anti-Igalpha Ab demonstrated that Lyn associated with the resting BCR was constitutively phosphorylated and activated in CD45-negative cells. In the parental cells, both regulatory sites were phosphorylated on BCR ligation. Taken collectively, these results suggest that CD45 keeps both BCR-associated and total cytoplasmic pools of Lyn in an inactive state, and a mechanism by which Lyn is activated by relative reduction of CD45 effect may be operative on BCR ligation.  相似文献   

6.
Genetic studies revealed that CD5 could be a negative regulator of the B-cell antigen receptor (BCR). We explore here the effect of human CD5 on BCR-triggered responses. B cells were obtained expressing a chimera composed of extracellular and transmembrane domains of Fcgamma type IIB receptor fused to CD5 cytoplasmic domain (CD5cyt). Coligation of the chimera with the BCR induces CD5cyt tyrosine phosphorylation. A rapid inhibition of BCR-induced calcium response is observed, as well as a partial but delayed inhibition of phospholipase Cgamma-1 phosphorylation. Activation of extracellular regulated kinase-2 is also severely impaired. Moreover, at the functional level, interleukin-2 production is abolished. Src homology 2 domain-bearing tyrosine phosphatase SHP-1 and Src homology 2 domain-bearing inositol 5'-phosphatase SHIP usually participate in negative regulation of the BCR. We show that they do not associate with the phosphorylated CD5 chimera. We finally demonstrate that the pseudo-immunoreceptor tyrosine based activation motif present in CD5cyt is involved because its deletion eliminates the inhibitory effect of the chimera, both at biochemical and functional levels. These results demonstrate the inhibitory role of CD5 pseudo-immunoreceptor tyrosine based activation motif tyrosine phosphorylation on BCR signaling. They further support the idea that CD5 uses mechanisms different from those already described to negatively regulate the BCR pathway.  相似文献   

7.
Defective expression of Fas leads to B cell autoimmunity, indicating the importance of this apoptotic pathway in eliminating autoreactive B cells. However, B cells with anti-self specificities occasionally escape such regulation in individuals with intact Fas, suggesting ways of precluding this apoptosis. Here, we examine whether coligation of the B cell Ag receptor (BCR) with the complement (C3)-binding CD21/CD19/CD81 costimulatory complex can enhance the escape of human B cells from Fas-induced death. This was warranted given that BCR-initiated signals induce resistance to Fas apoptosis, some (albeit not all) BCR-triggered events are amplified by coligation of BCR and the co-stimulatory complex, and several self Ags targeted in autoimmune diseases effectively activate complement. Using a set of affinity-diverse surrogate Ags (receptor-specific mAb:dextran conjugates) with varying capacity to engage CD21, it was established that BCR:CD21 coligation lowers the BCR engagement necessary for inducing protection from Fas apoptosis. Enhanced protection was associated with altered expression of several molecules known to regulate Fas apoptosis, suggesting a unique molecular model for how BCR:CD21 coligation augments protection. BCR:CD21 coligation impairs the generation of active fragments of caspase-8 via dampened expression of membrane Fas and augmented expression of FLIP(L). This, in turn, diminishes the generation of cells that would be directly triggered to apoptosis via caspase-8 cleavage of caspase 3 (type I cells). Any attempt to use the mitochondrial apoptotic protease-activating factor 1 (Apaf-1)-dependent pathway for apoptosis (as type II cells) is further blocked because BCR:CD21 coligation promotes up-regulation of the mitochondrial antiapoptotic molecule, Bcl-2.  相似文献   

8.
CD5 is a cell surface receptor that negatively regulates B cell function, but whose relationship to the immunoreceptor tyrosine-based inhibitory motif (ITIM) family of B cell inhibitory receptors is unclear. Using Fcgamma type IIB receptor-CD5 chimeras encompassing the cytoplasmic domain of CD5, we previously showed that a particular region of the molecule containing two tyrosine residues, Y429 and Y441, in an amino acid stretch similar to the Src autophosphorylation motif and a putative ITIM, respectively, antagonized early signaling events triggered through the B cell receptor (BCR). In this study, we provide evidences that only Y429 is mandatory for the inhibition by CD5 of the calcium response activated via the BCR. This residue also efficiently controls inhibition of the Ras/extracellular signal-related kinase-2 pathway. Analyzing the membrane translocation of the AKT protooncogene using its 3'-phosphoinositide-specific pleckstrin homology domain fused to the green fluorescent protein as a probe, we also show that CD5 strongly impairs its cellular redistribution and demonstrate the role played by Y429 in this process. We finally report that Y429 controls almost exclusively CD5 phosphorylation as well as inhibition of BCR-triggered IL-2 production upon coaggregation of the two receptors. Thus, CD5 uses an ITIM-independent strategy, centered on Y429, the major tyrosine-phosphorylated residue in its cytoplasmic domain, to inhibit BCR activation.  相似文献   

9.
Optimal activation of B-lymphocytes depends both upon expression of various cell surface receptors and adequate integration of signaling pathways. This requires signals generated upon recognition of antigen by the B lymphocyte antigen receptor (BCR) as well as additional signals provided by cognate interaction with T helper cells, including the CD40-CD154 interaction. Engagement of both the BCR and CD40 results in synergistic activation of B cells. Previous studies identified tumor necrosis factor receptor-associated factor (TRAF)-2 and TRAF3 in the CD40-signaling pathway together with BCR-activated protein kinase D (PKD) as important cooperative factors in this synergy. To better understand the role of these factors in bridging the BCR and CD40 signaling pathways, BCR signal regulation of TRAF function was examined. Results show that phosphorylation of TRAF2 is increased upon BCR but not CD40 engagement and that of the potentially phosphorylated residues of TRAF2, tyrosine 484 is crucial for BCR-CD40 synergy. Additionally, wild type or constitutively active Bruton's tyrosine kinase (Btk) enhanced, whereas the xid mutant form of Btk prevented, BCR-CD40 synergy. These effects were dependent upon TRAF2 and PKD activity. These findings suggest a model in which Btk contributes to the enhancement of the CD40 response by TRAF2 in a PKD-dependent manner.  相似文献   

10.
Tyrosine phosphorylation of CD19 in pre-B and mature B cells.   总被引:12,自引:0,他引:12       下载免费PDF全文
Cross-linking of B cell surface immunoglobulins (sIg) results in activation of mature B cells and stimulates a molecular signaling mechanism for antigen-specific B cell expansion and differentiation. This signaling pathway is dependent on tyrosine (Tyr) phosphorylation and results in the activation of sIg-associated src family kinases and p72SYK. Rapid Tyr phosphorylation occurs on multiple protein substrates. Here we show that activation of B cells by cross-linking sIg results in an increase in Tyr phosphorylation of the lineage-restricted B cell surface antigen CD19, and show that it is a major substrate of activated Tyr kinase following sIg stimulation. Lower levels of constitutive CD19 Tyr phosphorylation occurred in most sIg+ mature B cell lines examined and in normal dense tonsillar B cells. We also find that when CD19 is Tyr-phosphorylated it becomes competent to interact with SH2 domains suggesting a mechanism whereby, following B cell activation, CD19 could be linked to intracellular signaling pathways. In sIg- pre-B cell lines, CD19 was expressed but was not constitutively phosphorylated on tyrosine. Upon CD19 cross-linking, Tyr phosphorylation of CD19 was induced in sIg- pre-B cell lines. CD19 cross-linking also directly induced Tyr phosphorylation of CD19 and other substrates in mature B cells. The ability of CD19 to signal in the absence of sIg expression may provide important stimulation in pre-B cell development.  相似文献   

11.
The impact of BCR:CD21 co-engagement on B cell expression of molecules critical for T cell activation was investigated with receptor-specific mAbs conjugated to high MW dextran as stimulatory ligands. In the absence of IL-4, BCR:CD21 co-ligation augmented BCR-triggered CD86 only under conditions of very low BCR ligand dose or affinity, and CD80 was minimally induced by BCR and/or CD21 crosslinking. In the presence of IL-4, BCR:CD21 co-ligation augmented CD86 and CD80 expression under conditions of greater BCR engagement. However, with very high level BCR engagement, no bonus effect of BCR:CD21 crosslinking was observed. Co-ligation-promoted CD86 and CD80 expression was associated with heightened B cell activation of resting allogeneic T cells. The data suggest that co-clustering of BCR and the CD21/CD19 co-stimulatory complex following B cell engagement with C3d-bound microbial or self-antigens will enhance B cell recruitment of T cell help only when IL-4 is present and/or BCR engagement is very limiting.  相似文献   

12.
Ag-induced B cell proliferation in vivo requires a costimulatory signal through CD40, whereas B cell Ag receptor (BCR) ligation by anti-Ig H chain Abs, such as anti-Ig micro H chain Ab and anti-Ig delta H chain Ab, alone induces proliferation of B cells in vitro, even in the absence of CD40 ligation. In this study, we demonstrate that CD40 signaling is required for survival and proliferation of B cells stimulated by protein Ags in vitro as well as in vivo. This indicates that the in vitro system represents B cell activation in vivo, and that protein Ags generate BCR signaling distinct from that by anti-Ig H chain Abs. Indeed, BCR ligation by Ags, but not by anti-Ig H chain Abs, efficiently phosphorylates the inhibitory coreceptors CD22 and CD72. When these coreceptors are activated, anti-Ig H chain Ab-stimulated B cells can survive and proliferate only in the presence of CD40 signaling. Conversely, treatment of Ag-stimulated B cells with anti-CD72 mAb blocks CD72 phosphorylation and induces proliferation, even in the absence of CD40 signaling. These results strongly suggest that activation of B cells by anti-Ig H chain Abs involves their ability to silence the inhibitory coreceptors, and that the inhibitory coreceptors install requirement of CD40 signaling for survival and proliferation of Ag-stimulated B cells.  相似文献   

13.
Chronic lymphocytic leukemia (CLL) development and progression are thought to be driven by unknown antigens/autoantigens through the B cell receptor (BCR) and environmental signals for survival and expansion including toll-like receptor (TLR) ligands. CD180/RP105, a membrane-associated orphan receptor of the TLR family, induces normal B cell activation and proliferation and is expressed by approximately 60% of CLL samples. Half of these respond to ligation with anti-CD180 antibody by increased activation/phosphorylation of protein kinases associated with BCR signaling. Hence CLL cells expressing both CD180 and the BCR could receive signals via both receptors. Here we investigated cross-talk between BCR and CD180-mediated signaling on CLL cell survival and apoptosis. Our data indicate that ligation of CD180 on responsive CLL cells leads to activation of either prosurvival Bruton tyrosine kinase (BTK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT-mediated, or proapoptotic p38 mitogen-activated protein kinase (p38MAPK)-mediated signaling pathways, while selective immunoglobulin M (sIgM) ligation predominantly engages the BTK/PI3K/AKT pathway. Furthermore, pretreatment of CLL cells with anti-CD180 redirects IgM-mediated signaling from the prosurvival BTK/PI3K/AKT toward the proapoptotic p38MAPK pathway. Thus preengaging CD180 could prevent further prosurvival signaling mediated via the BCR and, instead, induce CLL cell apoptosis, opening the door to therapeutic profiling and new strategies for the treatment of a substantial cohort of CLL patients.  相似文献   

14.
The cell surface glycoprotein CD19 and the Src-related protein tyrosine kinase Lyn are key mediators of, respectively, positive and negative signaling in B cells. Despite the apparent opposition of their regulatory functions, a recent model of the biochemical events after B cell receptor (BCR) ligation intimately links the activation of Lyn and CD19. We examined the biochemical consequences of BCR ligation in mouse B cells lacking either Lyn or CD19 for evidence of interaction or codependence. In contrast to published results, we found CD19 phosphorylation after BCR ligation to be unaffected by the absence of Lyn, yet dependent on Src family protein tyrosine kinases as it was inhibited fully by PP2, an Src family-specific inhibitor. Consistent with normal CD19 phosphorylation in lyn(-/-) B cells, the recruitment of phosphoinositide-3 kinase to CD19 and the ability of CD19 to enhance both intracellular calcium flux and extracellular signal-regulated kinase 1/2 activation after coligation with the BCRs were intact in the absence of Lyn. Similarly, unique functions of Lyn were found to be independent of CD19. CD19(-/-) B cells were normal for increased Lyn kinase activity after BCR ligation, inhibition of BCR-mediated calcium flux after CD22 coligation, and inhibition of extracellular signal-regulated kinase phosporylation after FcgammaRIIB coligation. Collectively, these data show that the unique functions of Lyn do not require CD19 and that the signal amplification mediated by CD19 is independent of Lyn. We conclude that the roles of Lyn and CD19 after BCR ligation are independent and opposing, one being primarily inhibitory and the other stimulatory.  相似文献   

15.
B cell activation and Ab production in response to protein Ags requires presentation of peptides for recruitment of T cell help. We and others have recently demonstrated that B cells can also acquire innate help by presenting lipid Ags via CD1d to NKT cells. Given the newfound contribution of NKT cells to humoral immunity, we sought to identify the pathways that regulate CD1 molecule expression in human B cells. We show that ex vivo, activated and memory B cells expressed lower levels of CD1d compared with resting, naive, and marginal zone-like B cells. In vitro, CD1d was downregulated by all forms of B cell activation, leaving a narrow temporal window in which B cells could activate NKT cells. CD1c expression and function also decreased following activation by CD40L alone, whereas activation via the BCR significantly upregulated CD1c, particularly on marginal zone-like B cells. We found that the CD40L-induced downregulation of CD1d and CD1c correlated with diminished expression of retinoic acid receptor α (RARα) response genes, an effect that was reversed by RARα agonists. However, BCR-induced upregulation of CD1c was independent of the RAR pathway. Our findings that both CD1d and CD1c are upregulated by RARα signaling in human B cells is distinct from effects reported in dendritic cells, in which CD1c is inversely downregulated. One functional consequence of CD1d upregulation by retinoic acid was NKT cell cytotoxicity toward B cells. These results are central to our understanding of how CD1-restricted T cells may control humoral immunity.  相似文献   

16.
It has been shown that cytoplasmic tail of the IgG1 B cell receptors (BCRs) are essential for the induction of T-dependent immune responses. Also it has been revealed that unique tyrosine residue in the cytoplasmic tail of IgG2a has the potential of being phosphorylated at tyrosine and that this phosphorylation modulates BCR signaling. However, it still remains unclear whether such phosphorylation of IgG cytoplasmic tail is involved in the regulation of BCR surface expression. In order to approach the issue, we established and analyzed the cell lines which express wild-type or mutated forms of IgG1 BCR. As the result, we found that IgG1 BCR expressed normally on the surface of A20 B cell line independent of the cytoplasmic tail. In contrast, IgG1 BCR whose cytoplasmic tyrosine was replaced with glutamic acid which mimics phosphorylated tyrosine, was expressed most efficiently on the surface of non-B lineage cells and Igβ-down-regulated B cell lines. These results suggest that tyrosine residue in IgG cytoplasmic tail is playing a essential role for the efficient expression of IgG BCR on the cell surface when BCR associated signaling molecules, including Igβ, are down-regulated.  相似文献   

17.
CD134 is a member of the TNFR family expressed on activated T cells, whose ligand, CD134L, is found preferentially on activated B cells. We have previously reported that the CD70/CD27 interaction may be more important in the induction of plasma cell differentiation after the expansion phase induced by the CD154/CD40 interaction has occurred. When CD134-transfected cells were added to PBMCs stimulated with pokeweed mitogen, IgG production was enhanced in a dose-dependent fashion. Addition of CD134-transfected cells to B cells stimulated with Staphylococcus aureus Cowan I strain/IL-2 resulted in little if any enhancement of B cell IgG production and proliferation. We found that while CD134-transfected cells induced no IgG production by themselves, it greatly enhanced IgG production in the presence of CD40 stimulation or T cell cytokines such as IL-4 and IL-10. The addition of CD134-transfected cells showed only a slight increase in the number of plasma cells compared with that in the culture without them, indicating that an increased Ig production rate per cell is responsible for the observed enhancing effect of CD134L engagement rather than increase in plasma cell generation. These results strongly suggest different and sequential roles of the TNF/TNFR family molecules in human T cell-dependent B cell responses through cell-cell contacts and the cytokine network.  相似文献   

18.
19.
B lymphocyte antigen receptor (BCR) signals are regulated by CD19, with BCR-induced intracellular calcium ([Ca(2+)](i)) responses enhanced by CD19 co-ligation. In this study, CD19 engagement using a dimeric anti-CD19 antibody induced [Ca(2+)](i) mobilization and significantly enhanced BCR-induced [Ca(2+)](i) responses without a requirement for CD19/BCR co-ligation. Although simultaneous CD19 and BCR engagement significantly enhanced CD19/Lyn complex formation and [Ca(2+)](i) responses, downstream tyrosine phosphorylation of CD22 and multiple other cellular proteins was inhibited, as was SHP1 recruitment to phosphorylated CD22. CD19 overexpression also enhanced BCR-induced [Ca(2+)](i) responses, but down-regulated tyrosine phosphorylation of CD22 and multiple other cellular proteins following BCR ligation. Because CD19 and Lyn expression are genetically titrated in B cells, CD19 engagement may augment BCR-induced [Ca(2+)](i) responses by sequestering the available pool of functional Lyn away from downstream negative regulatory proteins such as CD22. Consistent with this, simultaneous CD19 engagement did not further enhance the BCR-induced [Ca(2+)](i) responses of Lyn- or CD22-deficient B cells. Thus, CD19 recruitment of Lyn may preferentially activate selective signaling pathways downstream of the CD19/Lyn complex to the exclusion of other downstream regulatory and effector pathways. Other receptors may also utilize a similar strategy to regulate kinase availability and downstream intermolecular signaling.  相似文献   

20.
Human peripheral blood BCRμ(+) B cells express high levels of CD23 and circulate preloaded with IgE. The Ag specificity of CD23-bound IgE presumably differs from the BCR and likely reflects the Ag-specific mix of free serum IgE. CD23-bound IgE is thought to enhance B cell Ag presentation to T cells raising the question of how a B cell might respond when presented with a broad mix of Ags and CD23-bound IgE specificities. We recently reported that an increase in CD23(+) B cells is associated with the development of resistance to schistosomiasis, highlighting the potential importance of CD23-bound IgE in mediating immunity. We sought to determine the relationship between BCR and CD23-bound IgE-mediated B cell activation in the context of schistosomiasis. We found that crude schistosome Ags downregulate basal B cell activation levels in individuals hyperexposed to infectious worms. Schistosome-specific IgE from resistant, occupationally exposed Kenyans recovered responses of B cells to schistosome Ag. Furthermore, cross-linking of CD23 overrode intracellular signals mediated via the BCR, illustrating its critical and dominating role in B cell activation. These results suggest that CD23-bound IgE augments and dominates recall responses through naive B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号