首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim of the study was to evaluate by transthoracic Doppler the alterations in mitral inflow velocity pattern caused by acute changes in loading conditions occurring during parabolic flights. Each parabola included normogravity (1 Gz, 1 min), mild hypergravity (1.8 Gz, 20 sec), microgravity (0 Gz, 24 sec) and mild hypergravity (1.8 Gz, 20 sec) phases. Pulsed-Doppler images were digitally acquired in 11 unmedicated subjects (46 +/- 5 years), in standing upright position and supine resting. Doppler profiles were semi-automatically traced and inflow parameters extracted and averaged onto three consecutive beats. Only in standing position, significant alterations during microgravity (p<0.05) were noted in several parameters.  相似文献   

2.
Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 +/- 5, 91 +/- 11, and 97 +/- 13 s(-1)) compared with the superficial femoral (53 +/- 4, 39 +/- 77, and 44 +/- 5 s(-1)) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.  相似文献   

3.
The purpose of this study was to examine the effects of the increased sympathetic activity elicited by the upright posture on blood flow to exercising human forearm muscles. Six subjects performed light and heavy rhythmic forearm exercise. Trials were conducted with the subjects supine and standing. Forearm blood flow (FBF, plethysmography) and skin blood flow (laser Doppler) were measured during brief pauses in the contractions. Arterial blood pressure and heart rate were also measured. During the first 6 min of light exercise, blood flow was similar in the supine and standing positions (approximately 15 ml.min-1.100 ml-1); from minutes 7 to 20 FBF was approximately 3-7 ml.min-1.100 ml-1 less in the standing position (P less than 0.05). When 5 min of heavy exercise immediately followed the light exercise, FBF was approximately 30-35 ml.min-1.100 ml-1 in the supine position. These values were approximately 8-12 ml.min-1.100 ml-1 greater than those observed in the upright position (P less than 0.05). When light exercise did not precede 8 min of heavy exercise, the blood flow at the end of minute 1 was similar in the supine and standing positions but was approximately 6-9 ml.min-1.100 ml-1 lower in the standing position during minutes 2-8. Heart rate was always approximately 10-20 beats higher in the upright position (P less than 0.05). Forearm skin blood flow and mean arterial pressure were similar in the two positions, indicating that the changes in FBF resulted from differences in the caliber of the resistance vessels in the forearm muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
不同体位对收缩时间间期(STI)和每搏输出量(SV)的影响   总被引:1,自引:0,他引:1  
用心阻抗法测算了30名男性青年学生在卧、蹲、垂直(坐、站)等不同体位状态下的收缩时间间期、每搏输出量和心输出量。结果表明,QS_2、LVET、LVETc、SY、CO均随卧、蹲、坐、站位递减;而PEP、QS_1、IVCT、PEP/LVET则按上述体位的顺序递增。本文认为,STI可反映不同体位状态下的血液动力学改变,其中LVET和PEP/LVET两个指标更为敏感。  相似文献   

5.
Vital capacity single-breath washouts using 90% O2-5% He-5% SF6 as a test gas mixture were performed with subjects sitting on a stool (upright) or recumbent on a stretcher (prone, supine, lateral left, lateral right, with or without rotation at end of inhalation). On the basis of the combinations of supine and prone maneuvers, gravity-dependent contributions to N2 phase III slope and N2 phase IV height in the supine posture were estimated at 18% and 68%, respectively. Whereas both He and SF6 slope decreased from supine to prone, the SF6-He slope difference actually increased (P = 0.015). N2 phase III slopes, phase IV heights, and cardiogenic oscillations were smallest in the prone posture, and we observed similarities between the modifications of He and SF6 slopes from upright to prone and from upright to short-term microgravity. These results suggest that phase III slope is partially due to emptying patterns of small units with different ventilation-to-volume ratios, corresponding to acini or groups of acini. Of all body postures under study, the prone position most reduces the inhomogeneities of ventilation during a vital capacity maneuver at both inter- and intraregional levels.  相似文献   

6.
End-diastolic volume and left ventricular stroke volume are increased in the supine compared with upright position, but the contribution of long-axis (LAS) and short-axis shortening (SAS) to these changes with change in posture has not been established. We examined long- and short-axis motion and dimensions with echocardiography in 10 healthy subjects in the upright and supine position. Long-axis length at end diastole was almost identical, whereas the diastolic short-axis diameter was increased in the supine position. At end systole, there was a decreased long-axis length and increased short-axis length in the supine vs. upright position. Both LAS and SAS were enhanced in supine vs. upright positions [LAS: 9.3 +/- 2.2 vs. 15.1 +/- 3.1 mm (P < 0.001); SAS: 12.7 +/- 3.2 vs. 16.3 +/- 2.8 mm (P < 0.001)], presumably via Starling mechanisms. LAS increased more in the lateral part of the mitral annulus than in the septal part [7.7 +/- 2.6 vs. 4.0 +/- 2.8 mm (P < 0.006)], which implies that the more spherical form, in the supine position, induces more stretch at the lateral free wall than in the ventricular septum. These findings support the notion that Starling mechanisms affect systolic LAS.  相似文献   

7.
We measured the isocapnic hypoxic ventilatory response and the hypercapnic ventilatory response by using rebreathing techniques in five normal subjects (ages 37-47 yr) before, during, and after 16 days of exposure to microgravity (microG). Control measurements were performed with the subjects in the standing and supine postures. In both microG and in the supine position, the hypoxic ventilatory response, as measured from the slope of ventilation against arterial O(2) saturation, was greatly reduced, being only 46 +/- 10% (microG) and 52 +/- 11% (supine) of that measured standing (P < 0.01). During the hypercapnic ventilatory response test, the ventilation at a PCO(2) of 60 Torr was not significantly different in microG (101 +/- 5%) and the supine position (89 +/- 3%) from that measured standing. Inspiratory occlusion pressures agreed with these results. The findings can be explained by inhibition of the hypoxic but not hypercapnic drive, possibly as a result of an increase in blood pressure in carotid baroreceptors in microG and the supine position.  相似文献   

8.
This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min?1 ·mmHg?1, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine.  相似文献   

9.
The application of lower body negative pressure (LBNP) is very useful method for simulation of +Gz stress and for evaluation of orthostatic reaction. The different physiological changes that occur during LBNP test and +Gz acceleration test are similar. Lategola and Trent found that supine LBNP exposure at the level of -50 mmHg may be equivalent to +2Gz in producing the changes of heart rate (HR). Polese and coworkers compared hemodynamic changes occurring during upright and supine LBNP at the levels to -70 mmHg with identical measurements made during accelerations to +2Gz, +3Gz, and +4Gz in the same subjects. They noted for example that HR changes during upright LBNP exceeded HR supine levels. Peak values of HR during +3Gz and +4Gz significantly exceeded HR levels during both kinds of LBNP, but HR values at +2Gz were equivalent to those at -40 mmHg of upright and -70 mmHg of supine LBNP. So, the present study was undertaken to evaluate adaptating responses to LBNP stimulus at the level of -60 mmHg, regulatory mechanisms of the circulatory system (central and peripheral) and to look for the possibility of +Gz tolerance prediction based on the changes of some hemodynamic parameters during LBNP.  相似文献   

10.
We tested the hypothesis that decreasing nasal air volume (i.e., increasing nasal turbinate blood volume) improves nasal air conditioning. We performed a randomized, two-way crossover study on the conditioning capacity of the nose in six healthy subjects in the supine and upright position. Cold, dry air (CDA) was delivered to the nose via a nasal mask, and the temperature and humidity of air were measured before it entered and after it exited the nasal cavity. The total water gradient (TWG) across the nose was calculated and represents the nasal conditioning capacity. Nasal volume decreased significantly from baseline without changing the mucosal temperature when subjects were placed in the supine position (P < 0.01). TWG in supine position was significantly lower than that in upright position (P < 0.001). In the supine position, nasal mucosal temperature after CDA exposure was significantly lower than that in upright position (P < 0.01). Our data show that placing subjects in the supine position decreased the ability of the nose to condition CDA compared with the upright position, in contrast to our hypothesis.  相似文献   

11.
We studied heart rate (HR), heart rate variability (HRV), and respiratory sinus arrhythmia (RSA) in four male subjects before, during, and after 16 days of spaceflight. The electrocardiogram and respiration were recorded during two periods of 4 min controlled breathing at 7.5 and 15 breaths/min in standing and supine postures on the ground and in microgravity. Low (LF)- and high (HF)-frequency components of the short-term HRV (< or =3 min) were computed through Fourier spectral analysis of the R-R intervals. Early in microgravity, HR was decreased compared with both standing and supine positions and had returned to the supine value by the end of the flight. In microgravity, overall variability, the LF-to-HF ratio, and RSA amplitude and phase were similar to preflight supine values. Immediately postflight, HR increased by approximately 15% and remained elevated 15 days after landing. LF/HF was increased, suggesting an increased sympathetic control of HR standing. The overall variability and RSA amplitude in supine decreased postflight, suggesting that vagal tone decreased, which coupled with the decrease in RSA phase shift suggests that this was the result of an adaptation of autonomic control of HR to microgravity. In addition, these alterations persisted for at least 15 days after return to normal gravity (1G).  相似文献   

12.
Objective: To measure red cell flux of adipose tissue in morbidly obese patients' pannus in the upright and supine position to determine factors which would render the lower pannus susceptible to ischemic necrosis. Design: A cohort study of morbidly obese subjects without ischemic necrosis. Setting: University teaching hospital. Patients: Twenty-three consecutive morbidly obese patients referred for gastroplasty. Measurements: Red cell flux, measured as RMS voltage by a laser Doppler velocimeter. An optical fiber with a tip diameter of 250μ was inserted into the upper and lower pannus and output recorded in the upright and supine positions. Other variables recorded were age, BMI, blood pressure and serum lipids. Results: Adipose tissue red cell flux demonstrates considerable spatial and temporal heterogeneity from subject to subject and in various locations in the pannus. No differences in red cell flux were detected in response to change in position. However, regression analysis demonstrated that the gradient between the upper and lower abdomen in the supine position was increasingly positive with age and in the upright position it was increasingly positive with increasing weight or BMI. Conclusions: These data suggest that red cell flux is heterogeneously distributed in the abdominal pannus and is not greatly influenced by body position. However, with increasing age and adiposity there is a gradient for decreased red cell flux to the lower portion of the pannus. This may be a factor in rendering this part of the pannus prone to ischemic fat necrosis.  相似文献   

13.
Effects of spaceflight on human calf hemodynamics.   总被引:3,自引:0,他引:3  
Chronic microgravity may modify adaptations of the leg circulation to gravitational pressures. We measured resting calf compliance and blood flow with venous occlusion plethysmography, and arterial blood pressure with sphygmomanometry, in seven subjects before, during, and after spaceflight. Calf vascular resistance equaled mean arterial pressure divided by calf flow. Compliance equaled the slope of the calf volume change and venous occlusion pressure relationship for thigh cuff pressures of 20, 40, 60, and 80 mmHg held for 1, 2, 3, and 4 min, respectively, with 1-min breaks between occlusions. Calf blood flow decreased 41% in microgravity (to 1.15 +/- 0.16 ml x 100 ml(-1) x min(-1)) relative to 1-G supine conditions (1.94 +/- 0.19 ml x 100 ml(-1) x min(-1), P = 0.01), and arterial pressure tended to increase (P = 0.05), such that calf vascular resistance doubled in microgravity (preflight: 43 +/- 4 units; in-flight: 83 +/- 13 units; P < 0.001) yet returned to preflight levels after flight. Calf compliance remained unchanged in microgravity but tended to increase during the first week postflight (P > 0.2). Calf vasoconstriction in microgravity qualitatively agrees with the "upright set-point" hypothesis: the circulation seeks conditions approximating upright posture on Earth. No calf hemodynamic result exhibited obvious mechanistic implications for postflight orthostatic intolerance.  相似文献   

14.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   

15.
Abdominal pressure transmission in humans during slow breathing maneuvers   总被引:1,自引:0,他引:1  
Pressure transmission within the abdomen was studied in four subjects standing and supine, breathing slowly and performing slow breathing maneuvers. Pressures were measured in the stomach and rectum with air-containing balloon-catheter systems Pga(air) and Prec and in the stomach with a water-filled catheter system Pga(liq). Changes in Pga(air), Pga(liq), and Prec were nearly in phase and linearly related. The changes in Pga(liq) and Prec were nearly equal in all maneuvers, whereas the changes in Pga(air) were systematically greater than those of Pga(liq) and Prec during quiet breathing and relaxation maneuvers in the upright position. During expulsive maneuvers in either posture the abdominal shape and stomach position were relatively constant, and the changes in Pga(air) were nearly equal to those of Pga(liq) and Prec. Discrepancies between changes in Pga(air) and the other pressures were consistent with presumed changes in the height of the gastric air bubble. We conclude that abdominal pressure in humans is essentially hydrostatic during quiet breathing and slow breathing maneuvers.  相似文献   

16.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

17.
Bed rest and spaceflight reduce exercise fitness. Supine lower body negative pressure (LBNP) treadmill exercise provides integrated cardiovascular and musculoskeletal stimulation similar to that imposed by upright exercise in Earth gravity. We hypothesized that 40 min of supine exercise per day in a LBNP chamber at 1.0-1.2 body wt (58 +/- 2 mmHg LBNP) maintains aerobic fitness and sprint speed during 15 days of 6 degrees head-down bed rest (simulated microgravity). Seven male subjects underwent two such bed-rest studies in random order: one as a control study (no exercise) and one with daily supine LBNP treadmill exercise. After controlled bed-rest, time to exhaustion during an upright treadmill exercise test decreased 10%, peak oxygen consumption during the test decreased 14%, and sprint speed decreased 16% (all P < 0.05). Supine LBNP exercise during bed rest maintained all the above variables at pre-bed-rest levels. Our findings support further evaluation of LBNP exercise as a countermeasure against long-term microgravity-induced deconditioning.  相似文献   

18.
Abdominal muscle activity was investigated during resting tidal breathing and speech production in upright and supine body positions in five male and five female young adult subjects. Results showed that patterns of abdominal electromyographic (EMG) activity were highly dependent on body position. Data for resting tidal breathing resembled those of previous investigations and revealed one sex-related finding. Data for speech production indicated that the lateral region of the abdomen was highly active in the upright position and occasionally active in the supine position. In the upright position, lateral EMG levels during speech production were characterized by generally higher levels in the lower than upper lateral sites and were almost always higher than during resting tidal breathing. In the supine position, EMG levels during speech production occasionally exceeded those associated with resting tidal breathing but were substantially lower than those associated with upright speech production. Abdominal EMG activity was most prevalent during loud speech production and during speech produced at low lung volumes. Findings are discussed in relation to current knowledge of respiratory mechanics and neural control.  相似文献   

19.
Embolus transport simulations are performed to investigate the dependence of inferior vena cava (IVC) filter embolus-trapping performance on IVC anatomy. Simulations are performed using a resolved two-way coupled computational fluid dynamics/six-degree-of-freedom approach. Three IVC geometries are studied: a straight-tube IVC, a patient-averaged IVC, and a patient-specific IVC reconstructed from medical imaging data. Additionally, two sizes of spherical emboli (3 and 5 mm in diameter) and two IVC orientations (supine and upright) are considered. The embolus-trapping efficiency of the IVC filter is quantified for each combination of IVC geometry, embolus size, and IVC orientation by performing 2560 individual simulations. The predicted embolus-trapping efficiencies of the IVC filter range from 10 to 100%, and IVC anatomy is found to have a significant influence on the efficiency results (\(P < 0.0001\)). In the upright IVC orientation, greater secondary flow in the patient-specific IVC geometry decreases the filter embolus-trapping efficiency by 22–30 percentage points compared with the efficiencies predicted in the idealized straight-tube or patient-averaged IVCs. In a supine orientation, the embolus-trapping efficiency of the filter in the idealized IVCs decreases by 21–90 percentage points compared with the upright orientation. In contrast, the embolus-trapping efficiency is insensitive to IVC orientation in the patient-specific IVC. In summary, simulations predict that anatomical features of the IVC that are often neglected in the idealized models used for benchtop testing, such as iliac vein compression and anteroposterior curvature, generate secondary flow and mixing in the IVC and influence the embolus-trapping efficiency of IVC filters. Accordingly, inter-subject variability studies and additional embolus transport investigations that consider patient-specific IVC anatomy are recommended for future work.  相似文献   

20.
Orthostatic intolerance (OI) is a major problem following spaceflight, and, during flight, astronauts also experience sleep restriction. We hypothesized that sleep restriction will compound the risk and severity of OI following simulated microgravity and exaggerate the renal, cardioendocrine, and cardiovascular adaptive responses to it. Nineteen healthy men were equilibrated on a constant diet, after which they underwent a tilt-stand test. They then completed 14-16 days of simulated microgravity [head-down tilt bed rest (HDTB)], followed by repeat tilt-stand test. During HDTB, 11 subjects were assigned to an 8-h sleep protocol (non-sleep restricted), and 8 were assigned to a sleep-restricted protocol with 6 h of sleep per night. During various phases, the following were performed: 24-h urine collections, hormonal measurements, and cardiovascular system identification. Development of presyncope or syncope defined OI. There was a significant decrease in time free of OI (P = 0.02) and an increase in OI occurrence (P = 0.06) after HDTB among all subjects. However, the increase in OI occurrence did not differ significantly between the two groups (P = 0.60). The two groups also experienced similar physiological changes with HDTB (initial increase in sodium excretion; increased excretion of potassium at the end of HDTB; increase in plasma renin activity secretion without a change in serum or urine aldosterone). No significant change in autonomic function or catecholamines was noted. Simulated microgravity leads to increased OI, and sleep restriction does not additively worsen OI in simulated microgravity. Furthermore, conditions of sleep restriction and nonsleep restriction are similar with respect to renal, cardioendocrine, and cardiovascular responses to simulated microgravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号