首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature-sensitive Chinese hamster cells (K12) have been shown to be defective for the initiation of new rounds of DNA replication when incubated at the restrictive temperature (40.5 degrees). By temperature shift experiments with synchronous cultures, we have marked out the step at which the mutation is expressed as the four hours preceding the initiation of DNA synthesis. The block imposed by the mutation has been shown to be irreversible. In order to approach the biochemical characterization of the temperature-sensitive function in K12 cells, we have analyzed the cellular proteins synthesized under permissive (35 degrees) and restrictive temperatures. The synthesis of three polypeptides is markedly enhanced when K12 cells are incubated at 40.5 degrees. One of them (band B) has turned out to be a useful biochemical marker of the expression of K12 mutation since its synthesis is not affected in other ts-mutants or in hybrids in which K12 mutation is complemented. In addition, the alteration in band B synthesis is irreversible and occurs during the same stage of the cell cycle at which the mutated function is expressed.  相似文献   

2.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

3.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

4.
Several enzymatic activities involved in the biosynthetic pathways of nucleotides, including thymidine kinase, which has been used as a biochemical marker in studies of gene transfer, are induced by herpes simplex virus (HSV). The utility of additional markers prompted us to reanalyze the effects of HSV infection on the activities of two other enzymes for which direct selective methods can be devised: dCMP deaminase and CDP reductase. For this purpose, mutant Chinese hamster (lA1) cells devoid of dCMP deaminase activity or Syrian hamster (BHK-21/C13) cells were infected by HSV type 1 or 2, and the activities of thymidine kinase, dCMP deaminase, and CDP reductase were measured in the cell extracts. The reported induction of thymidine kinase and CDP reductase by HSV was confirmed, whereas the stimulation of dCMP deaminase activity could not be observed. For both cell lines, the HSV-induced CDP reductase differed from the host enzyme by sensitivity to inhibition by both dTTP and dATP. This property should be helpful in developing a selection system for this activity.  相似文献   

5.
6.
Asynchronous cultures of ts12, an anchorage-dependent derivative of the thermosensitive Chinese hamster cell line ts111, show a rapid drop in [3H]thymidine incorporation with accumulation of the cells in the G1 and in the G2 phases of the cycle, when shifted from 34.5 to 39.4 degrees C. Shift-up experiments carried out after either isoleucine deprivation or synchronization at 39.4 degrees C, locate the execution point of a ts function in late G1 (2.5-3 h before S). However, stimulation of proliferation of a high density-arrested population allows a fraction of the cells to enter S. In addition to the G1 ts defect, ts12 expresses a slight cytokinesis defect at 39.4 degrees C (8-15% binucleate cells). The results suggest that altered processes are taking place at a post-metaphasic stage during the first hours after the shift-up. When populations are synchronized by a thymidine block and released at 39.4 degrees C, multinucleate cells in addition to binucleate cells are observed. Part of these multinucleate cells result from abnormal karyokinesis without inhibition of cytokinesis. Evidence is presented suggesting that excess thymidine allows the re-expression of the multinucleation phenotype of ts111.  相似文献   

7.
The effect of serum stimulation on unidirectional and net K flux and their relationship to the initiation of DNA synthesis has been investigated in mouse 3T3 fibroblasts. Stimulation of quiescent 3T3 cells with 20% serum results in the initiation of S phase approximately ten hours after serum addition. During transition from G1 to S phase distinct changes in K transport and cellular K content occur. Total unidirectional K influx undergoes an immediate 2-fold increase upon serum addition, an observation in qualitative agreement with previous results (Rozengurt and Heppel, 1975). This total increase in unidirectional K influx represents a proportional increase in the active, ouabain sensitive component and the K-K exchange component. The initial increase in total flux is followed by a gradual decline over a 16-hour period to levels approaching those of quiescent cells. Following the initial increase in unidirectional K influx is an approximately 75% increase in cell K on a per milligram protein basis or a 40% increase on a per volume basis. This increase peaks at four to five hours and then declines to initial levels at 10 to 14 hours. Populations of quiescent cells given 20% serum plus 0.5 mM ouabain simultaneously are totally blocked from entering S phase, as determined by the appearance of 3H-thymidine labeled nuclei. However, if the ouabain is removed after six hours these cells then undergo the same changes in unidirectional K influx and content as serum stimulated cells with entrance into S phase retarded by five to six hours. If ouabain is added to serum stimulated cells at six hours, after the increase in K transport and K content have occurred, entrance into S phase is not entirely blocked. In cells stimulated with serum and 0.5 mM dBcAMP plus 1 mM theophylline simultaneously, entrance into S phase is greatly reduced as compared to serum stimulation only. However, the early and late changes in K flux and K content are not substantially altered. This indicates that the K transport events associated with G1 and early S phase are not directly regulated by changes in cAMP levels which follow serum stimulation.  相似文献   

8.
The activities of dCMP deaminase and DNA polymerase I increased twofold and fivefold in BHK-21/C13 cells after infection by the virus of herpes simplex. The increases were greatly diminished, and under certain conditions prevented, by inclusion of actinomycin D or cycloheximide in the cell-virus system during the infective cycle. The dCMP deaminase purified from infected cells harvested 8h after infection differed from the deaminase purified from non-infected cells inasmuch as (a) it was more resistant to heating at 37 degrees C; (b) the substrate (dCMP) concentration at half-maximum velocity was lower; (c) maximum activation was achieved by a lower concentration of dCTP; (d) it was more resistant to inhibition by dTTP; and (e) it behaved differently when assayed in the presence of a herpes-virus-specific antiserum. The DNA polymerase activity in the infected cells was markedly decreased in the presence of the herpes-virus-specific antiserum.  相似文献   

9.
Viability, DNA synthesis and mitosis have been followed in the temperature sensitive Chinese hamster cell mutant K12 under permissive and non-permissive conditions. On incubation at 40°C cells retained their ability to form colonies at 33°C for 15 to 20 hours, but viability was lost gradually during the following 20 hours. When random cultures of K12 were shifted to 40°C the rate of DNA synthesis was normal for three to four hours but then decreased markedly, reaching 95% inhibition after 24 hours. Under the same conditions mitosis was inhibited after 15 hours. If cultures which had been incubated at 40°C for 16 hours were placed at 33°C the rate of DNA synthesis increased five hours after the shift down and mitosis 18 hours after. These results can be interpreted on the assumption that K12 at 40°C is unable to complete a step in the cell cycle which is essential for DNA synthesis and which occurs three to four hours before the start of S at 33°C.  相似文献   

10.
Disc polyacrylamide gel electrophoresis (disc PAGE) analyses have revealed that mouse, human, and monkey cytosol deoxycytidylate (dCMP) deaminases differ in electrophoretic mobility, so that mixtures of mouse and human, mouse and monkey, and human and monkey enzymes can be separated. To learn whether the genes for dCMP deaminase and thymidine (dT) kinase are genetically linked, disc PAGE analyses of cytosol fractions from human-mouse and monkey-mouse somatic cell hybrids were carried out. The interspecific somatic cell hybrids were derived from the fusion of cytosol dT kinase deficient mouse cells with cytosol dT kinase-positive human and monkey cells: they contained mostly mouse chromosomes and a few primate chromosomes, including the determinant for primate cytosol dT kinase. The disc PAGE analyses demonstrated that the human-mouse and monkey-mouse somatic cell hybrids contained a dCMP deaminase activity with an electrophoretic mobility characteristic of mouse dCMP deaminase. Enzymes with electrophoretic mobilities characteristic of human and monkey dCMP deaminases were not demonstrable. These findings suggest that primate cytosol dT kinase and dCMP deaminase are coded on different chromosomes, or that the formation in hybrid cells of an active primate dCMP deaminase is suppressed. Chick-mouse somatic cell hybrids containing chick but not mouse cytosol dT kinase were also analyzed. The chick-mouse hybrid cells contained cytosol dCMP deaminase activity, but it was not possible to establish whether the enzyme was of murine or avian origin because of the similarity in electrophoretic mobility between the chick and mouse enzymes. Human and mouse cells contained low levels of mitochondrial dCMP deaminase activity. In contrast to dT kinase isozymes, however, mitochondrial and cytosol dCMP deaminases were electrophoretically indistinguishable.This investigation was aided by Grant Q-163 from the Robert A. Welch Foundation and by USPHS Grants CA-06656-12 and 1-K6-AI 2352 from the National Cancer Institute and the National Institute of Allergy and Infectious Diseases.  相似文献   

11.
The complement-fixing tumor (T) antigen induced by simian virus 40 (SV40) has been prepared from SV40-infected cell cultures, from infected cell cultures treated at the time of infection with 1-beta-d-arabinofuranosylcytosine (ara-C), and from SV40-transformed cells. Upon partial purification, the T antigen exhibited the following properties: it was tightly adsorbed by calcium phosphate gel, it was precipitated by acetic acid at pH 5 or by ammonium sulfate at about 20 to 32% saturation, and it had a molecular weight greater than 250,000, as estimated by Sephadex G-200 gel chromatography. In contrast, deoxycytidylate (dCMP) deaminase, thymidylate (dTMP) kinase, and thymidine (dT) kinase were less strongly bound to calcium phosphate and were not precipitated at pH 5; these enzymes also had much lower molecular weights than the T antigen, as did dihydrofolic (FH(2)) reductase. Furthermore, higher ammonium sulfate concentrations were required to precipitate dCMP deaminase, dTMP kinase, and FH(2) reductase activities than to precipitate the T antigen. Another difference was that the T antigen was not stabilized, but dCMP deaminase, dTMP kinase, and dT kinase, were stabilized, respectively, by dCTP, dTMP, and dT or dTTP. Deoxyribonucleic acid (DNA) polymerase activity resembled the T antigen in adsorption to calcium phosphate, in precipitation by ammonium sulfate or at pH 5, and in the rate of inactivation when incubated at 38 C. However, the polymerase activity could be partly separated from the T antigen by Sephadex G-200 gel chromatography. The cell fraction containing partially purified T antigen also contained a soluble complement-fixing antigen (presumably a subunit of the viral capsid) which reacted with hyperimmune monkey sera. The latter antigen was present in very low titers or absent from cell extracts prepared from SV40-infected monkey kidney cell cultures which had been treated with ara-C at the time of infection, or from SV40-transformed mouse kidney (mKS) or hamster tumor (H-50) cells. The T antigen, however, was present in usual amounts in SV40-transformed cells or ara-C treated, infected cells.  相似文献   

12.
A N Chebotarev  T G Selezneva 《Genetika》1982,18(10):1667-1673
The cultures of Chinese hamster cells were treated with different concentrations (2.5, 5.0, 10.0, 20.0, 80.0 and 160.0 microgram/ml) 5-BrdU and 5-BrdC during 12 hours. The cultures were fixed at the 24-th hour. The linear increase of sister chromatid exchanges (SCE) was discovered with the increase of BrdU concentration. No change of SCE frequency was observed at different BrdC concentrations. The reasons for these differences in a concentration effect are discussed.  相似文献   

13.
The role of deoxyribonucleic acid (DNA) replication in the control of the synthesis of deoxycytidylate (dCMP) deaminase and lysozyme in Bacillus subtilis infected with bacteriophage 2C has been studied. These phage-induced enzymes are synthesized at different times during the latent period. It was shown by actinomycin inhibition that the formation of the late enzyme (lysozyme) required messenger ribonucleic acid (mRNA) synthesized de novo after the initiation of translation of mRNA which specifies the early function (dCMP deaminase). The inhibition of phage DNA synthesis by mitomycin C prevented the synthesis of lysozyme only when added before the onset of phage DNA replication, but it did not affect the synthesis or action of dCMP deaminase when added at any time during the latent period. Treatment of infected cells with mitomycin C after phage DNA synthesis had reached 8 to 10% of its maximal rate resulted in the production of normal amounts of lysozyme. These observations suggest that mRNA specifying early enzymes can be transcribed from parental (and probably also from progeny) DNA, whereas late functional messengers can be transcribed only after the formation of progeny DNA.  相似文献   

14.
dCMP deaminase from Bacillus subtilis has been purified 700-fold. In addition to the substrate, dCMP, the enzyme requires dCTP, Zn2+, and 2-mercaptoethanol, Mg2+ cannot substitute for Zn2+. The dCMP saturation curve is hyperbolic in the presence of saturating concentrations of dCTP and Zn2+. The dCTP saturation curve is sigmoidal, the sigmoidicity being dependent on the Zn2+ and dCMP concentrations. The molecular weight as determined by gel filtration is 170,000 both in the presence and in the absence of dCTP and Zn2+. In the absence of thiols, the enzyme is highly unstable. At 0 degrees, the half-life of the enzyme activity is 30 min. Addition of Zn2+ and dCTP protects against this inactivation. In the presence of a thiol, dCTP and Zn2+ protect the enzyme against heat inactivation at 50 degrees. A mutant lacking dCMP deaminase (dcd) was isolated. Labeling of the pyrimidine nucleotide pools reveals that in the parent strain, 45% of the dTTP pool is derived via dCMP deamination, the residual 55% being derived via reduction of a uridine nucleotide. Since the dcd mutant grows with the same doubling time as the parent strain, we conclude that uridine nucleotide reduction alone is capable of supplying sufficient dUMP for normalthymidine nucleotide synthesis.  相似文献   

15.
We describe a new temperature-sensitive mutant of Chinese hamster cell fibroblasts. After a shift to the nonpermissive temperature of 40.5 degrees C, the rates of DNA, RNA, and protein synthesis declined rapidly (to < or = 50% within 12 h) and the progression of unsynchronized cells through the cell cycle was affected. We believe that DNA synthesis came to a halt after a short time, because cells no longer entered the S phase. The decrease in protein synthesis at 40.5 degrees C was shown to be a consequence of a decrease in the number of polysomes, whereas free 80S ribosomes accumulated. We concluded that the components of the protein biosynthetic machinery were intact (ribosomes and soluble factors), but synthesis was limited by a shortage of mRNA. The decline in mRNA production had a significant effect on the synthesis of proteins (e.g., heat shock proteins) translated from short-lived messages. We observed that both polyadenylated and nonpolyadenylated RNA syntheses declined at 40.5 degrees C, whereas the synthesis of small RNAs (4 to 5S) was less reduced. The argument is made that the temperature-sensitive phenotype is the result of a defect affecting mRNA synthesis.  相似文献   

16.
Chinese hamster embryo cells transformed by simian virus 40 temperature-sensitive T-antigen mutants replicated when confluent at 40.5 degrees C, regardless of the selection method, selection temperature, or virus strain used.  相似文献   

17.
Structure and expression of the Chinese hamster thymidine kinase gene.   总被引:18,自引:8,他引:10       下载免费PDF全文
My colleagues and I have cloned a nearly full-length Chinese hamster thymidine kinase (TK) cDNA in a lambda gt10 vector and characterized this cDNA by nucleotide sequencing. The hamster TK protein is encoded in this cDNA by a 702-base-pair open reading frame which specifies a 25,625-dalton protein closely homologous to the previously described human and chicken TK proteins. Using cDNA nucleotide sequence data in conjunction with sequence data derived from selected subclones of the hamster TK gene recombinant phage lambda HaTK.5, we have resolved the structure of the TK gene, finding the 1,219 base pairs of the cDNA sequence to be distributed through 11.2 kilobases of genomic DNA in at least seven exon segments. In addition, we have constructed a variety of Chinese hamster TK minigenes and exonuclease III-S1 derivatives of these genes which have permitted us to define the limits of the Chinese hamster TK gene promoter and demonstrate that efficient TK transformation of Ltk- cells by TK minigenes depends on the presence of both TK intervening sequences and sequences 3' to the site of mRNA polyadenylation.  相似文献   

18.
《The Journal of cell biology》1983,97(4):1055-1061
Two Chinese hamster ovary cell lines with mutated beta-tubulins (Grs-2 and Cmd-4) and one that has a mutation in alpha-tubulin (Tax-1) are temperature sensitive for growth at 40.5 degrees C. To determine the functional defect in these mutant cells at the nonpermissive temperature, they were characterized with respect to cell cycle parameters and microtubule organization and function after relatively short periods at 40.5 degrees C. At the nonpermissive temperature all the mutants had normal appearing cytoplasmic microtubules. Premature chromosome condensation analysis failed to show any discrete step in the interphase cell cycle in which these mutants are arrested. These cells, however, show several defects at the nonpermissive temperature that appear related to the function of microtubules during mitosis. Time-lapse studies showed that mitosis was lengthened in the three mutant lines at 40.5 degrees C as compared with the wild-type cells at this temperature, resulting in a higher proportion of cells in mitosis after temperature shift. There was also a large increase in multinucleated cells in mutant populations after incubation at the nonpermissive temperature. Immunofluorescent studies using a monoclonal anti--alpha-tubulin antibody showed that the mutant cells had a high proportion of abnormal spindles at the nonpermissive temperature. The two altered beta-tubulins and the altered alpha-tubulin all were found to cause a similar phenotype at the high temperature that results in mitotic delay, defective cytokinesis, multinucleation, and ultimately, cell death. We conclude that spindle formation is the limiting microtubule function in these mutant cell lines at the nonpermissive temperature and that these cell lines will be of value for the study of the precise role of tubulin in mammalian spindle formation.  相似文献   

19.
Several laboratories have reported that exposure of cells to UV radiation results in a significant imbalance in deoxynucleoside triphosphate pool concentrations. In our CHO-K1 cells, a rapid drop in dCTP is accompanied by a rapid increase in dTTP. Examination of enzyme activities associated with synthesis/degradation of these molecules suggests that UV transiently enhances a putative dCTPase, dCMP deaminase and CdR kinase activities. This results in accumulation of excess dUMP which is probably converted to dTMP, then to dTTP. The absence of dCMP deaminase in V79 cells prohibits this rapid response in those cells. Moreover, significantly different dCMP deaminase activities were observed in CHO-K1 cells obtained from other laboratories, suggesting they, too, may respond differently to irradiation.  相似文献   

20.
A possible role of the simian virus 40 T antigen in chromosome damages in transformed cells was examined. Two lines of Golden hamster embryonal fibroblasts, transformed by SV40 tsA30 and ts239 mutants (He30 and He239, respectively), were incubated at nonpermissive (40.5-41 degrees C) or permissive (33 degrees C) temperatures. Chromosome aberrations were registered in either subline after 3, 6, 9 and 12 weeks of cultivation under the above conditions. In the both cell lines kept at 33 degrees the frequency of aberrant metaphases and the number of chromosome breaks per cell increased drastically by week 3 of cultivation, and such a state was preserved up to week 12. The frequency of aberrant metaphases in cells cultivated at 41 degrees was maintained at the constant level (He239) or at slightly higher than that in the original culture (He30). The sublines He239, originally incubated at 33 or 40.5 degrees, were then shifted to 40.5 and 33 degrees, respectively. As a result the number of chromosome aberrations either decreased (33----40.5 degrees) or increased (40.5----33 degrees) as early as on day 2, and these patterns were stabilized at the level corresponding to the new conditions. We assayed the induction of DNA breaks in cells, grown at the permissive or nonpermissive temperatures, by using DNA sedimentation in the alkaline sucrose gradient. The DNA sedimentation peaks of cells cultured at 37 and 41 degrees coincided, whereas the DNA of cells cultured at 33 degrees was represented by shorter fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号