首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ahnfeltia plicata (Hudson) Fries, the type species of Ahnfeltia Fries, is currently assigned to the Phyllophoraceae (Gigartinales). Several morphological and biochemical characters distance A. plicata from the Phyllophoraceae but, because sexual reproduction has never been demonstrated, an alternative placement has not been possible. A. plicata now is shown to have a heteromorphic sexual life history. Erect branched gametophytes are dioecious. In male sori, spermatangia are cut off transversely from spermatangial mother cells. Female sori form numerous terminal sessile carpogonia. Following fertilization, several zygotes in each sorus fuse facultatively with undifferentiated intercalary cells of the female sorus and cut off gonimoblast initials obliquely outwards. These initials give rise to branching gonimoblast filaments that fuse with apical and intercalary female sorus cells and with each other, then grow radially outward in the compound external carposporophyte and terminate in carposporangia. Carpospores develop in culture into crustose tetrasporophytes identical to Porphyrodiscus simulans Batters. Field-collected P. simulans tetraspores grew into erect A. plicata axes. Tetrasporangia are formed by division and enlargement of crust apical cells followed by sequential enlargement and maturation of tetrasporocytes in an erosive process. Monosporangia are formed in sori on male gametophytes. Pit plugs of both gametophyte and tetrasporophyte phases consist of naked plug cores without cap layers of membranes. Gametophytes exhibit both cell fusions and secondary pit connections whereas tetrasporophytes form cell fusions but lack secondary pit connections. On the basis of the unique female and postfertilization reproductive development and in conjunction with the pit plug structure which is unique among florideophytes, the order Ahnfeltiales, containing the family Ahnfeltiaceae, is proposed.  相似文献   

2.
Pelagomonas calceolata gen. et sp. nov., an ultra-planktonic marine alga, is described using electron microscopy and the cytoplasmic small subunit (18S) ribosomal RNA (rRNA) gene sequence. Cells are uniflagellate, about 1.5 × 3 μm in size. The flagellium has two rows of bipartite hairs, the paraxonemal rod has a dentate appearance, and a two-gyred transitional helix is present between two transitional plates. Microtubular roots, striated roots, and a second basal body are absent. A thin organic theca surrounds most of the cell. There is a single chloroplast with a girdle lamella and a single, dense mitochondrion with tubular cristae. A single Golgi body with swelled cisternae lies beneath the flagellum, and each cell has an ejectile organelle that putatwely releases a cylindrical structure. A vacuole, or cluster of vacuoles, contains the putative carbohydrate storage product. The 18S rRNA gene was sequenced completely in both directions, excluding three primer regions. When compared to the same gene sequence from other organisms, Pelagomonas calceolata gen. et sp. nov. occupies an unresolved position among other chromophyte algae and is distinct from members of any of these classes. Based on morphological, ultrastructural, and molecular data, we describe this alga as a new species, and we place this highly unusual new species in a new genus, family, order, and class.  相似文献   

3.
A new ceramiaceous alga, Sciurothamnion stegengae De Clerck et Kraft, gen. et sp. nov., is described from the western Indian Ocean and the Philippines. Sciurothamnion appears related to the tribe Callithamnieae on the basis of the position and composition of its procarps and by the majority of post‐fertilization events. It differs, however, from all current members of the tribe by the presence of two periaxial cells bearing determinate laterals per axial cell. Additionally, unlike any present representative of the subfamily Callithamnioideae, no intercalary foot cell is formed after diploidization of the paired auxiliary cells. The genus is characterized by a terminal foot cell (“disposal cell”), which segregates the haploid nuclei of the diploidized auxiliary cell from the diploid zygote nucleus. The nature of three types of foot cells reported in the Ceramiaceae (intercalary foot cells containing only haploid nuclei, intercalary foot cells containing haploid nuclei and a diploid nucleus, and terminal foot cells containing only haploid nuclei) is discussed.  相似文献   

4.
A new foliose red alga, common subtidally from British Columbia to the Aleutian Islands, is described and given the name Hommersandia maximicarpa. The lobed perennial thallus, which can reach a height of 23 cm, is distinguished by its vegetative structure and by its unique pattern of nonprocarpic carposporophyte development. In transverse section, the blades consist of a narrow filamentous medullary layer sandwiched on either side by large ellipsoidal subcortical cells and a thin outer cortex. The monocarpogonial branch and auxiliary cell systems of the female plants are typical of many members of the Kallymeniaceae. However, after the carpogonialfusion cell forms, a distinctive developmental pattern begins. The connecting filaments radiate outward into the surrounding tissue, branch abundantly, and become septate. They then contact, in addition to auxiliary cells, many small moniliform accessory branches. These branches appear to act as initiation points for the gonimoblast filaments. The large diffuse carposporophytes produced are unknown in any other member of the Cryptonemiales. The vegetative and reproductive anatomy of Hommersandia is compared to other Kallymeniaceae, and similar patterns of postfertilization development are examined in the Rhodophyta.  相似文献   

5.
The red alga Cenacrum subsutum gen. et sp. nov. is described from material collected at Macquarie Island in the subantarctic between November 1977 and February 1978. The habit and carposporophyte development are similar to members of the family Rhodymeniaceae (Rhodymeniales), but certain vegetative features are unique. The frond is a variously incised or lobed foliose blade with hollow apices above and a medulla which becomes progressively filled basipetally with ingrowing rhizoidal filaments. Details of carpogonial branch, auxiliary cell, connecting cell and gonimoblast anatomy are given, as well as observations on the habitats and distribution of the species.  相似文献   

6.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

7.
Four species of Amansia Lamouroux were initially found in Natal. More Complete studies on these species revealed a new genus, Melanamansia, Which is described on the basis of presence of two dorsal pseudopericentral cells in two new species from Natal (M. seagriefii sp. nov. & M. fimbrifolia sp. nov.) in addition to other structural characters and features of pigmentation and reproduction. Pseudopericentral cells are not present in the type species of Amansia, A. multifida Lamouroux. The other two species of Amansia occurring in Natal, A. glomerata C. Agardh & A. loriformis sp. nov., have characters similar to the type species. Comparison of species from other regions of the world has shown that eight additional species, previously assigned to Amansia, belong to the new genus.  相似文献   

8.
Eucheuma acanthocladum (Harvey) J. Agardh, E. gelidium (J Agardh) J. Agardh, E. echinocarpum Areschoug and E. schrammii(P. et H. Crouan) J. Agardh from the tropical and warm temperate waters of the western Atlantic Ocean and Caribbean Sea are transferred to a new genus, Meristiella. Meristiella exhibits the following Unique combination of characters among genera in the Solieriaceae: (1) rotated periaxial cells, (2) a loosely filamentous medulla. (3) an auxiliary cell complex, (4) Single and twin connecting filaments and (5) spinose cystocarps composed of a central, small-celled placentum, based on its reproductive features, Meristiella. is assigned to the tribe Agardhielleae. Culture experiments and herbarium studies provide evidence that E, gelidium and E. acantghocladum are conspecific. Lectotypes are designated for the included species.  相似文献   

9.
Morphological and molecular studies demonstrate that the tribe Ptiloteae (Ceramiaceae, Ceramiales) is polyphyletic. The Ptiloteae, sensu stricto, occur only in the Northern Hemisphere and all Southern Hemisphere representatives belong in other tribes. Three genera (Euptilota, Seirospora, and Sciurothamnion) are transferred to the Euptiloteae Hommersand et Fredericq, trib. nov., and the Callithamnieae is revised to include three Ptilota‐like genera, Georgiella, Falklandiella, and Diapse, and two new genera. Heteroptilon Hommersand, gen. nov. is erected to receive Euptilota pappeana Kützing 1849 and Aglaothamnion rigidulum De Clerck, Bolton, Anderson et Coppejans 2004 from South Africa, and Aristoptilon Hommersand et W. A. Nelson, gen. nov. is established to receive Euptilota mooreana Lindauer 1949 from New Zealand. The principal difference between the Euptiloteae and the Callithamnieae is seen in the earliest stages after fertilization. The fertilized carpogonium enlarges and forms a pair of tube‐like protuberances directed toward the auxiliary cells that are cut off as connecting cells in the Euptiloteae, whereas in the Callithamnieae the carpogonium usually divides into two cells, each of which cuts off a small connecting cell that fuses with an adjacent enlarging auxiliary cell. Nuclei are terminal in spermatangia of the Euptiloteae, subtended by mucilaginous vesicles, and are medial in the Callithamnieae situated between apical and basal vesicles. The Euptiloteae and Callithamnieae (including the Ptilota‐like members) are each strongly supported in maximum‐likelihood tree topologies resulting from analyses of combined 18S rDNA, 28S rDNA, 16S rDNA, and rbcL data sets. Their sister relationship is also well supported.  相似文献   

10.
The mode of division of vegetative cells, formation of spermatangial parent cells, initiation of the carpogonial branch apparatus, and formation of tetrasporangial initials are homologous developmental processes that are documented for the first time in the type species of the economically important family Gracilariaceae, Gracilaria verrucosa (Hudson) Papenfuss from the British Isles. G. verrucosa is characterized by a supporting cell of intercalary origin that bears a 2-celled carpogonial branch flanked by two sterile branches, direct fusion of cells of sterile branches onto the carpogonium, formation of an extensive carpogonial fusion cell through the incorporation of additional gametophytic cells prior to gonimoblast initiation, gonimoblast initials produced from fusion cell lobes, schizogenous development of the cytocarp cavity, inner gonimoblast cells producing tubular nutritive cells that fuse with cells of the pericarp or floor of the cystocarp, absence of cytologically modified tissue in the floor of the cystocarp, and carposporangial initials produced in clusters or irregular chains. Spermatangial parent cells are generated in flaments from intercalary cortical cells that line an intercellular space forming a ‘pit’ or ‘conceptacle’. Tetrasporangial initials are transformed from terminal cells derived through division of an outer cortical cell. Tetrasporangia are cruciately divided. The Gracilariaceae is removed from Gigartinales and transferred to the new order Gracilariales. Their closest living relatives appear to be agarophytes belonging to the Gelidiales and Ahnfeltiales.  相似文献   

11.
新菌——吉林链梭菌的分类学研究   总被引:1,自引:0,他引:1  
从7例阴道炎患者阴道分泌物分离出7株细菌,均具有相同的生物学特性,G-梭状菌,单、成对或链状。无荚膜,无芽抱,无鞭毛。兼性厌氧菌,在大气中培养不生长,在5%~10%CO2中或烛缸培养18~24h才能形成菌落,MacConkey培养基不生长,最适生长温度35℃-37℃。氧化酶阴性,接触酶阴性,不还原硝酸盐,发酵糖类(指示剂用溴甲酚紫),克氏双糖铁高层和斜面均发生产酸反应,七叶苷水解试验阳性,马尿酸盐水解试验阴性。经BiologMicrostationSystem自动化细菌鉴定系统检测无确定结果,DNAG+C含量为42.3mol%、16srRNA序列测定结果经计算机检索国际基因菌库EMBL和GenBank所有序列进行比较,表明该白与已知科、属亲缘关系较远,结合其表型特征,建议建立新属,命名为吉林链梭菌(Streptofusiagen.nov.Jilinasp.nov.)该菌已收藏在中国微生物菌种保藏中心CGMCCNO.0215T(T=typestrain).该菌16SrRNA片断已被国际基因库收录,接收号为U34365。  相似文献   

12.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

13.
A new genus and species of heterotrophic dinoflagellate, Cryptoperidiniopsis brodyi gen. et sp. nov., are described. This new species commonly occurs in estuaries from Florida to Maryland, and is often associated with Pfiesteria piscicida Steidinger et Burkholder, Pseudopfiesteria shumwayae (Glasgow et Burkholder) Litaker et al., and Karlodinium veneficum (Ballantine) J. Larsen, as well as other small (<20 μm) heterotrophic and mixotrophic dinoflagellates. C. brodyi gen. et sp. nov. feeds myzocytotically on pigmented microalgae and other microorganisms. The genus and species have the enhanced Kofoidian plate formula of Po, cp, X, 5′, 0a, 6″, 6c, PC, 5+s, 5″′, 0p, and 2″″ and are assigned to the order Peridiniales and the family Pfiesteriaceae. Because the Pfiesteriaceae comprise small species and are difficult to differentiate by light microscopy, C. brodyi gen. et sp. nov. can be easily misidentified.  相似文献   

14.
Chrysolepidomonas gen. nov. is described for single-celled monads with two flagella, a single chloroplast, and distinctive canistrate and dendritic scales. The type species, Chrysolepidomonas dendrolepidota sp. nov., is described for the first time. The canistrate scales bear eight “bumps” on the top surface, and the dendriticscales have a tapered base with a quatrifid tip. These organic scales are formed in the Golgi apparatus and storred in a scale reservoir. The scale reservoir is bounded on two sides by the R1 and R2 in microtubular roots of the basal apparatus. The cyst (=stomatocyst, statospore) forms endogenously by means of a silica deposition vesicle. The outer cyst surface is smooth, and the pore region is unornamented. Two other organisms bearing canistrate and dendritic scales, previously assigned to the genus Sphaleromants, are transferred to the genus Chrysolepidomonas. They are C.angalica sp. nov. and C. marine(Pienaar) comb. nov. The distinguishing features of Chrysolepidomonas and Sphaleromantis are discussed. A new family, Chrysolepidomonadceae fam. noc., is described for flagellates covered with organic scales.  相似文献   

15.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

16.
A new sand‐dwelling dinoflagellate from Palau, Galeidinium rugatum Tamura et Horiguchi gen. et sp. nov., is described. The life cycle of this new alga consists of a dominant nonmotile phase and a brief motile phase. The motile cell transforms itself directly into the nonmotile cell after swimming for a short period, and cell division takes place in the nonmotile phase. The nonmotile cell possesses a dome‐like cell covering, which is wrinkled and equipped with a transverse groove on the surface. The cell has 10–20 chloroplasts and a distinct eyespot. The motile cell is Gymnodinium‐like in shape. The dinoflagellate possesses an endosymbiotic alga to which the chloroplasts belong and which is separated from the host (dinoflagellate) cytoplasm by a unit membrane. The endosymbiont cytoplasm also possesses its own eukaryotic nucleus and mitochondria. The eyespot is surrounded by triple membranes and is located in the host cytoplasm. Photosynthetic pigment analysis, using HPLC, revealed that G. rugatum possesses fucoxanthin as the principal accessory pigment instead of peridinin. The rbcL tree showed that G. rugatum is monophyletic with Durinskia baltica (Levander) Carty et Cox and Kryptoperidinium foliaceum (Stein) Lindemann and that this clade is closely related to the pennate diatom, Cylindrotheca sp. The endosymbiont of G. rugatum is therefore shown to be a diatom. Phylogenetic analysis based on small subunit rDNA sequences demonstrated that G. rugatum, D. baltica, and K. foliaceum, all of which are known to harbor an endosymbiont of diatom origin, are closely related.  相似文献   

17.
A previously unknown species of kelp was collected on Kagamil Island, Aleutian Islands. The species can be easily distinguished from any known laminarialean alga: the erect sporophytic thallus is composed of a thin lanceolate blade attaining ~2 m in height and ~0.50 m in width, without midrib, and the edge of the blade at the transition zone is thickened to form a V‐shape; the stipe is solid and flattened, slightly translucent, attaining ~1 m in length; the holdfast is semidiscoidal and up to 0.15 m in diameter. Anatomically, the blade has the typical trumpet‐shaped hyphae characteristic of the Chordaceae and derived foliose laminarialean species (i.e., Alariaceae/Laminariaceae/Lessoniaceae). No hair pits or mucilaginous structures were observed on the blade or stipe. No fertile sporophytes were collected, but abundant juvenile sporophytes were observed in the field. In the molecular phylogenetic analyses using chloroplast rbcL gene, nuclear ITS1‐5.8S‐ITS2 rDNA, and mitochondria nad6 DNA sequences, the new species (Aureophycus aleuticus gen. et sp. nov.) showed a closer relationship with Alariaceae of conventional taxonomy, or the “Group 1” clade of Lane et al. (2006) including Alaria and related taxa than with other groups, although the species was not clearly included in the group. Aureophycus may be a key species in elucidating the evolution of the Alariaceae within the Laminariales. Because of the lack of information on reproductive organs and insufficient resolution of the molecular analyses, we refrain from assigning the new species to a family, but we place the new species in a new genus in the Laminariales.  相似文献   

18.
Platoma abbottiana (Gymnophlaeaceae; Gigartinales), a new species of benthic red algae, is described from Isla Mejía and is the second member of this genus reported from the Gulf of California, Mexico. Vegetative anatomy and reproductive details of the carpogonial and auxiliary cell branches of the new species are described and illustrated. Geographical distributions of the seven previously described Platoma species are given. Their distinguishing morphological characteristics are compared to those of the new species. The correct time and place of valid publication of the generic name, Platoma, and some of its binomials are discussed.  相似文献   

19.
Dicroglossum gen. nov. (Delesseriaceae, Ceramiales) is a monotypic genus based on Delesseria crispatula, a species originally described by Harvey for plants collected from southwestern Western Australia. Distinctive features of the new genus include exogenous indeterminate branches; growth by means of a single transversely dividing, apical cell; absence of intercalary divisions in the primary, secondary, and tertiary cell rows; lateral pericentral cells not transversely divided; not all cells of the secondary cell rows producing tertiary cells rows; all tertiary initials reaching the thallus margin; midrib present but lateral nerves absent; determinate lateral bladelets arising endogenously; blades monostromatic, except, at the midrib; carpogonial branches restricted to primary cell rows, on both surfaces of unmodified blades; procarps produced on both blade surfaces, each procarp consisting of a supporting cell that bears two four-celled carpogonial branches and one sterile-cell group of three to four cells; and tetrasporangia borne in two layers, separated by a central row of sterile cells. The combination of exogenous indeterminate branching and bicarpogonial procarps is considered to warrant the recognition of a new tribe, the Dicroglosseae, within the subfamily Delesserioideae.  相似文献   

20.
The new genus Pycnococcus Guillard is based on several clones from the western North Atlantic and Gulf of Mexico. The type and only described species, Pycnococcus provasolii Guillard, sp. nov., is typified by clone Ω48-23 from the North Atlantic. Cells of Pycnococcus provasolii are solitary, spherical, 1.5–4.0 μm in diameter, have a resistant cell wall lacking sporopollenin, and have the ultrastructural characteristics of green algae. With the light microscope they are scarcely distinguishable from cells of other coccoid planktonic organisms. In pigmentation P. provasolii resembles Micromonas pusilla, Mantoniella squamata, and Mamiella gilva in having chl a, much chl b, Mg 2,4-divinylphaeoporphyrin a5 monomethyl ester (presumably), and prasinoxanthin as a major xanthophyll. The pyrenoid of P. provasolii has a cytoplasmic channel, which is unique among species closely related to it. Flagellates, occurring rarely in culture, are similar to but distinguishable from known Pedinomonas species by size and shape. Pycnococcus provasolii is referred to the new family Pycnococcaceae Guillard, in the order Mamiellales of the class Micromonadophyceae (Chlorophyta). Clones of Pycnococcus provasolii are oceanic in nutritional characteristics, require only vitamin B12 in culture, and are well adapted to growth under blue or blue-violet light of low intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号