首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colony-stimulating factor 1 receptor (CSF-1R), immunoprecipitated with either anti-phosphotyrosine or anti-receptor antibodies from lysates of ligand-stimulated cells, is associated with a phosphatidylinositol (PtdIns) 3-kinase activity. The ligand-independent transforming efficiencies of human CSF-1R mutants containing certain amino acid substitutions at codon 301 in their extracellular domains correlated directly with their levels of associated lipid kinase activity. A tyrosine kinase defective CSF-1R mutant (CSF-1R[met616]), containing a mutated ATP binding site, lacked associated PtdIns 3-kinase activity in immune complexes recovered from CSF-1-stimulated cells. However, CSF-1R[met616] associated with PtdIns 3-kinase when phosphorylated in trans in CSF-1-stimulated cells coexpressing an enzymatically competent CSF-1R tyrosine kinase. Another CSF-1R mutant, (CSF-1R[delta KI]), lacking 67 amino acids from its intracellular 'kinase insert' domain, exhibited a partially impaired ligand-dependent mitogenic response and a significant reduction in its associated PtdIns 3-kinase activity. Ligand-stimulated CSF-1R[delta KI] molecules contained levels of phosphotyrosine almost equivalent to wild-type receptors, but were phosphorylated at different sites in vitro. Therefore, the association of CSF-1R with active PtdIns 3-kinase required the receptor tyrosine kinase activity, was triggered by receptor phosphorylation on tyrosine and, in this series of mutants, correlated with their mitogenic potential. Although the receptor KI domain strongly contributes to the association with PtdIns 3-kinase, this region is not strictly essential for the interaction.  相似文献   

2.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

3.
CSF-1 is equipotent to insulin in its ability to stimulate 2-[3H]deoxyglucose uptake in 3T3-L1 adipocytes expressing the colony stimulating factor-1 receptor/insulin receptor chimera (CSF1R/IR). However, CSF-1-stimulated glucose uptake and glycogen synthesis is reduced by 50% in comparison to insulin in 3T3-L1 cells expressing a CSF1R/IR mutated at Tyr960 (CSF1R/IRA960). CSF-1-treated adipocytes expressing the CSF1R/IRA960 were impaired in their ability to phosphorylate insulin receptor substrate 1 (IRS-1) but not in their ability to phosphorylate IRS-2. Immunoprecipitation of IRS proteins followed by Western blotting revealed that the intact CSF1R/IR co-precipitates with IRS-2 from CSF-1-treated cells. In contrast, the CSF1R/IRA960 co-precipitates poorly with IRS-2. These observations suggest that Tyr960 is important for interaction of the insulin receptor cytoplasmic domain with IRS-2, but it is not essential to the ability of the insulin receptor tyrosine kinase to use IRS-2 as a substrate. These observations also suggest that in 3T3-L1 adipocytes, tyrosine phosphorylation of IRS-2 by the insulin receptor tyrosine kinase is not sufficient for maximal stimulation of receptor-regulated glucose transport or glycogen synthesis.  相似文献   

4.
Recent literature implicates a regulatory function of the juxtamembrane domain (JMD) in receptor tyrosine kinases. Mutations in the JMD of c-Kit and Flt3 are associated with gastrointestinal stromal tumors and acute myeloid leukemias, respectively. Additionally, autophosphorylated Tyr559 in the JMD of the colony stimulating factor-1 (CSF-1) receptor (CSF-1R) binds to Src family kinases (SFKs). To investigate SFK function in CSF-1 signaling we established stable 32D myeloid cell lines expressing CSF-1Rs with mutated SFK binding sites (Tyr559-TFI). Whereas binding to I562S was not significantly perturbed, Y559F and Y559D exhibited markedly decreased CSF-1-dependent SFK association. All JMD mutants retained intrinsic kinase activity, but Y559F, and less so Y559D, showed dramatically reduced CSF-1-induced autophosphorylation. CSF-1-mediated wild-type (WT)-CSF-1R phosphorylation was not markedly affected by SFK inhibition, indicating that lack of SFK binding is not responsible for diminished Y559F phosphorylation. Unexpectedly, cells expressing Y559F were hyperproliferative in response to CSF-1. Hyperproliferation correlated with prolonged activation of Akt, ERK, and Stat5 in the Y559F mutant. Consistent with a defect in receptor negative regulation, c-Cbl tyrosine phosphorylation and CSF-1R/c-Cbl co-association were almost undetectable in the Y559F mutant. Furthermore, Y559F underwent reduced multiubiquitination and delayed receptor internalization and degradation. In conclusion, we propose that Tyr559 is a switch residue that functions in kinase regulation, signal transduction and, indirectly, receptor down-regulation. These findings may have implications for the oncogenic conversion of c-Kit and Flt3 with JMD mutations.  相似文献   

5.
Inhibitors of receptor tyrosine kinases are implicated as therapeutic agents for the treatment of many human diseases including cancer, inflammation and diabetes. Cell-based assays to examine inhibition of receptor tyrosine kinase mediated intracellular signaling are often laborious and not amenable to high-throughput cell-based screening of compound libraries. Here we describe the development of a nonradioactive, sandwich enzyme-linked immunosorbent assay (ELISA) to quantify the activation and inhibition of ligand-induced phosphorylation of the colony-stimulating factor-1 receptor (CSF-1R) in 96-well microtiter plate format. The assay involves the capture of the Triton X-100 solubilized human CSF-1R, from HEK293E cells overexpressing histidine epitope-tagged CSF-1R (CSF-1R/HEK293E), with immobilized CSF-1R antibody and detection of phosphosphorylation of the activated receptor with a phosphotyrosine specific antibody. The assay exhibited a 5-fold increase in phosphorylated CSF-1R signal from CSF-1R/HEK293E cells treated with colony-stimulating factor (CSF-1) relative to treated vector control cells. Additionally, using a histidine epitope-specific capture antibody, this method can also be adapted to quantify the phosphorylation state of any recombinantly expressed, histidine-tagged receptor tyrosine kinase. This method is a substantial improvement in throughput and quantitation of CSF-1R phosphorylation over conventional immunoblotting techniques.  相似文献   

6.
Addition of colony stimulating factor-1 (CSF-1) to macrophages stimulates the rapid, transient tyrosine phosphorylation, membrane association and multiubiquitination of Cbl (Wang et al. [1996] J. Biol. Chem. 271:17-20). Kinetic analysis reveals that the tyrosine phosphorylation of Cbl is coincident with its plasma membrane translocation and association with the activated tyrosine phosphorylated CSF-1 R, p85, Grb2, and tyrosine phosphorylated p58Shc and that these events precede the simultaneous multiubiquitination of Cbl and the CSF-1 R. Tyrosine phosphorylation and multiubiquitination of the cell surface CSF-1 R are stoichiometric and the multiubiquitinated CSF-1 R is degraded. Similarly, the membrane associated Cbl is almost stoichiometrically ubiquitinated, but the ubiquitinated Cbl is not degraded, being recovered, deubiquitinated, in the cytosol 3-10 min after stimulation at 37 degrees C. In the membrane fraction of cells stimulated at 4 degrees C, the association of p58Shc and Grb2 with Cbl is stable, whereas its association with Sos and p85 is transient and their dissociation occurs at the time CSF-1 R and Cbl multiubiquitination commence. The membrane translocation and the pattern of association of Sos with the CSF-1R, p85, Grb2, and p58Shc resemble those of Cbl but Sos is not tyrosine phosphorylated, nor multiubiquitinated and the coprecipitation of these proteins, other than Grb2, with Sos is much less. Complexes formed by Sos and Cbl are largely independent and membrane complexes of Cbl with other tyrosine phosphorylated proteins, p85 and Grb2 also contain CSF-1 R. These data raise the possibility that the predicted negative regulatory role of Cbl in macrophages is its enhancement of ligand-induced CSF-1 R internalization/degradation.  相似文献   

7.
A peptide antiserum (anti-A) directed to the intracellular, juxtamembrane region (residues 552 to 574) of the human colony-stimulating factor 1 receptor (CSF-1R) precipitated only ligand-activated, native receptors from solution but bound to unstimulated forms after their denaturation. Two peptide antisera (anti-KI1 and -KI2), directed to residues 679 to 700 and 701 to 721, respectively, in the CSF-1R kinase insert (KI) domain and including mapped sites of ligand-induced phosphorylation at Tyr-699 and Tyr-708, bound at least 80% of the receptor molecules expressed in either CSF-1-stimulated or unstimulated cells. Immune complexes formed with anti-KI1, anti-A, or a peptide antiserum to the CSF-1R carboxyl terminus (anti-C-ter) coprecipitated CSF-1R complexed to a phosphatidylinositol 3-kinase (PtdIns 3-K) from CSF-1-stimulated cells, whereas anti-KI2 serum did not. In an in vitro assay, binding of CSF-1R to PtdIns 3-K required receptor tyrosine phosphorylation but not CSF-1R-mediated phosphorylation of the lipid kinase, and the association was specifically blocked by anti-KI2 or antibodies to phosphotyrosine. Neither anti-KI1, anti-A, nor anti-C-ter serum inhibited binding. We conclude that (i) only a minority of ligand-activated receptors form a stable complex with PtdIns 3-K in vivo, (ii) efficient binding of the lipid kinase requires receptor tyrosine phosphorylation within the CSF-1R KI domain, and (iii) a region within the KI domain defined by residues 701 to 721 at least partially overlaps the PtdIns 3-K binding site.  相似文献   

8.
Metabolic labeling of simian virus 40-immortalized murine macrophages with 32Pi and immunoblotting with antibodies to phosphotyrosine demonstrated that the c-fms proto-oncogene product (colony-stimulating factor 1 [CSF-1] receptor) was phosphorylated on tyrosine in vivo and rapidly degraded in response to CSF-1. Stimulation of the CSF-1 receptor also induced immediate phosphorylation of several other cellular proteins on tyrosine. By contrast, the mature cell surface glycoprotein encoded by the v-fms oncogene was phosphorylated on tyrosine in the absence of CSF-1, suggesting that it functions as a ligand-independent kinase.  相似文献   

9.
The turnover of the colony-stimulating factor 1 receptor (CSF-1R), the c-fms proto-oncogene product, is accelerated by ligand binding or by activators of protein kinase C (PKC), such as the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). The mechanisms of ligand- and TPA-induced downmodulation were shown to differ by the following criteria. First, in cells in which PKC was downmodulated, CSF-1R reexpressed at the cell surface remained sensitive to ligand but was refractory to TPA-induced degradation. Second, a kinase-defective receptor containing a methionine-for-lysine substitution at amino acid 616 at its ATP-binding site failed to undergo ligand-induced downmodulation but remained responsive to TPA. Following CSF-1 stimulation, no intermediates of receptor degradation could be immunoprecipitated with polyvalent antisera to CSF-1R. In contrast, TPA induced specific proteolytic cleavage of the receptor near its transmembrane segment, resulting in the release of the extracellular ligand-binding domain from the cell and the generation of an intracellular fragment containing the kinase domain. Two-dimensional phosphopeptide mapping demonstrated no new sites of phosphorylation in response to TPA in either the residual intact receptor or the intracellular proteolytic fragment. Therefore, PKC appears not to trigger downmodulation by directly phosphorylating the receptor but, rather, activates a protease which recognizes CSF-1R as a substrate.  相似文献   

10.
A chimeric receptor composed of the extracellular domain of the human T-cell antigen CD2 (T11) joined to the membrane-spanning segment and the intracellular tyrosine kinase domain of the human colony-stimulating factor 1 receptor (CSF-1R) was expressed in murine NIH 3T3 fibroblasts. Stimulation of these cells with monoclonal antibodies to CD2 induced phosphorylation of the chimeric glycoprotein on tyrosine, receptor downmodulation, and mitogenesis. In contrast, neither human CSF-1R nor the chimeric receptor was able to function in interleukin-2-dependent murine T cells. In fibroblasts, then, CSF-1 per se is not required for activation of the receptor kinase or for a biological response, whereas in T cells, CSF-1R may be unable to engage the downstream signal transduction machinery.  相似文献   

11.
Colony-stimulating factor-1 (CSF-1) activation of the CSF-1 receptor (CSF-1R) causes Cbl protooncoprotein tyrosine phosphorylation, Cbl-CSF-1R association and their simultaneous multiubiquitination at the plasma membrane. The CSF-1R is then rapidly internalized and degraded, whereas Cbl is deubiquitinated in the cytoplasm without being degraded. We have used primary macrophages from gene-targeted mice to study the role of Cbl. Cbl-/- macrophages form denser colonies and, at limiting CSF-1 concentrations, proliferate faster than Cbl+/+ macrophages. Their CSF-1Rs fail to exhibit multiubiquitination and a second wave of tyrosine phosphorylation previously suggested to be involved in preparation of the CSF-1-CSF-1R complex for endocytosis. Consistent with this result, Cbl-/- macrophage cell surface CSF-1-CSF-1R complexes are internalized more slowly, yet are still lysosomally degraded, and the CSF-1 utilization by Cbl-/- macrophages is reduced approximately 2-fold. Thus, attenuation of proliferation by Cbl is associated with its positive regulation of the coordinated multiubiquitination and endocytosis of the activated CSF-1R, and a reduction in the time that the CSF-1R signals from the cell surface. The results provide a paradigm for studies of the mechanisms underlying Cbl attenuation of proliferative responses induced by ligation of receptor tyrosine kinases.  相似文献   

12.
Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK.  相似文献   

13.
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.  相似文献   

14.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

15.
W Li  E R Stanley 《The EMBO journal》1991,10(2):277-288
We have used kinetic and cross-linking approaches to study CSF-1-induced changes in the structure and function of the CSF-1R. Addition of CSF-1 to cells stimulates or stabilizes non-covalent CSF-1R dimerization resulting in activation of the CSF-1R kinase and the tyrosine phosphorylation of the receptor and certain cytoplasmic proteins. The non-covalent dimers become covalently linked via disulfide bonds and/or are subsequently further modified. These modified forms are selectively internalized. Pre-treatment of cells with the alkylating agent, iodoacetic acid (IAA), selectively inhibits covalent dimerization, modification and internalization but enhances protein tyrosine phosphorylation. It is proposed that ligand-induced non-covalent dimerization activates the CSF-1R kinase, whereas the covalent dimerization and subsequent modification lead to kinase inactivation, phosphotyrosine dephosphorylation and internalization of the receptor--ligand complex.  相似文献   

16.
Lee AW 《PloS one》2011,6(10):e25580
Colony stimulating factor-1 (CSF-1 or M-CSF) is the major physiological regulator of the proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage. CSF-1 binds to a receptor tyrosine kinase, the CSF-1 receptor (CSF-1R). Multiple pathways are activated downstream of the CSF-1R; however, it is not clear which pathways regulate proliferation and survival. Here, we investigated the role of atypical protein kinase Cs (PKCζ) in a myeloid progenitor cell line that expressed CSF-1R (32D.R) and in primary murine bone marrow derived macrophages (BMMs). In 32D.R cells, CSF-1 induced the phosphorylation of PKCζ and increased its kinase activity. PKC inhibitors and transfections with mutant PKCs showed that optimal CSF-1-dependent Erk activation and proliferation depended on the activity of PKCζ. We previously reported that CSF-1 activated the Erk pathway through an A-Raf-dependent and an A-Raf independent pathway (Lee and States, Mol. Cell. Biol.18, 6779). PKC inhibitors did not affect CSF-1 induced Ras and A-Raf activity but markedly reduced MEK and Erk activity, implying that PKCζ regulated the CSF-1-Erk pathway at the level of MEK. PKCζ has been implicated in activating the NF-κB pathway. However, CSF-1 promoted proliferation in an NF-κB independent manner. We established stable 32D.R cell lines that overexpressed PKCζ. Overexpression of PKCζ increased the intensity and duration of CSF-1 induced Erk activity and rendered cells more responsive to CSF-1 mediated proliferation. In contrast to 32D.R cells, PKCζ inhibition in BMMs had only a modest effect on proliferation. Moreover, PKCζ -specific and pan-PKC inhibitors induced a paradoxical increase in MEK-Erk phosphorylation suggesting that PKCs targeted a common negative regulatory step upstream of MEK. Our results demonstrated that CSF-1 dependent Erk activation and proliferation are regulated differentially in progenitors and differentiated cells.  相似文献   

17.
The receptor for the macrophage colony stimulating factor-1 (CSF-1R) is a transmembrane glycoprotein with intrinsic tyrosine kinase activity. CSF-1 stimulation promotes the growth of cells of the macrophage lineage and of fibroblasts engineered to express CSF-1R. We show that CSF-1 stimulation resulted in activation of three Src family kinases, Src, Fyn and Yes. Concomitant with their activation, all three Src family kinases were found to associate with the ligand-activated CSF-1 receptor. These interactions were also demonstrated in SF9 insect cells co-infected with viruses encoding the CSF-1 receptor and Fyn, and the isolated SH2 domain of Fyn was capable of binding the CSF-1R in vitro. Analysis of mutant CSF-1Rs revealed that the 'kinase insert' (KI) domain of CSF-1R was not required for interactions with Src family kinases, but that mutation of one of the receptor autophosphorylation sites, Tyr809, reduced both their binding and enzymatic activation. Because fibroblasts expressing this receptor mutant are unable to form colonies in semi-solid medium or to grow in chemically defined medium in the presence of CSF-1, the Src family kinases may play a physiological role in the mitogenic response to CSF-1.  相似文献   

18.
Quiescent mouse NIH3T3 cells expressing a transduced human c-fms gene encoding the receptor for colony stimulating factor-1 (CSF-1) were stimulated with mitogenic concentrations of platelet-derived growth factor (PDGF) or CSF-1. Immunoprecipitated phospholipase C-gamma (PLC-gamma) was phosphorylated on tyrosine and calcium was mobilized following treatment of intact cells with PDGF. In contrast, only trace amounts of phosphotyrosine were incorporated into PLC-gamma and no intracellular calcium signal was detected after CSF-1 stimulation. Similarly, CSF-1 treatment did not stimulate phosphorylation of PLC-gamma on tyrosine in a CSF-1-dependent. SV40-immortalized mouse macrophage cell line that expresses high levels of the CSF-1 receptor. In fibroblasts, antiserum to PLC-gamma co-precipitated a fraction of the tyrosine phosphorylated form of the PDGF receptor (PDGF-R) after ligand stimulation, implying that phosphorylated PDGF-R and PLC-gamma were associated in a stable complex. Pre-treatment of cells with orthovanadate also led to tyrosine phosphorylation of PLC-gamma which was significantly enhanced by PDGF, but not by CSF-1. Thus, although the PDGF and CSF-1 receptors are structurally related and appear to be derived from a single ancestor gene, only PDGF-induced mitogenesis in fibroblasts correlated with tyrosine phosphorylation of PLC-gamma.  相似文献   

19.
Efficient binding of active phosphatidylinositol (PI) 3'-kinase to the autophosphorylated macrophage colony stimulating factor receptor (CSF-1R) requires the noncatalytic kinase insert (KI) region of the receptor. To test whether this region could function independently to bind PI 3'-kinase, the isolated CSF-1R KI was expressed in Escherichia coli, and was inducibly phosphorylated on tyrosine. The tyrosine phosphorylated form of the CSF-1R KI bound PI 3'-kinase in vitro, whereas the unphosphorylated form had no binding activity. The p85 alpha subunit of PI 3'-kinase contains two Src homology (SH)2 domains, which are implicated in the interactions of signalling proteins with activated receptors. Bacterially expressed p85 alpha SH2 domains complexed in vitro with the tyrosine phosphorylated CSF-1R KI. Binding of the CSF-1R KI to PI 3'-kinase activity, and to the p85 alpha SH2 domains, required phosphorylation of Tyr721 within the KI domain, but was independent of phosphorylation at Tyr697 and Tyr706. Tyr721 was also critical for the association of activated CSF-1R with PI 3'-kinase in mammalian cells. Complex formation between the CSF-1R and PI 3'-kinase can therefore be reconstructed in vitro in a specific interaction involving the phosphorylated receptor KI and the SH2 domains of p85 alpha.  相似文献   

20.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号