首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Members of the tumor necrosis factor (TNF)-receptor (R) family may be involved in the tissue remodeling that occurs in the primate corpus luteum (CL) during development and regression. As a first step towards addressing this issue, studies assessed TNF ligand-R expression and regulation in CL collected from monkeys during the early (ECL, Days 3-5), mid (MCL, Days 7-8), mid-late (MLCL, Days 10-11), late (LCL, Days 14-16), and very late (VLCL, menses) luteal phase of the menstrual cycle. CL were also collected after gonadotropin and/or steroid ablation and replacement (with hLH and the progestin R5020) for 3 days at mid-late luteal phase. TNF-alpha, -beta, FAS ligand (FASL), and TNF-R1 mRNA levels were two- to sixfold greater (P < 0.05) at the MLCL or LCL phase as compared to earlier (ECL, MCL). In contrast, TNF-R2 and FAS mRNA levels did not change during the luteal phase. Immunohistochemical staining for TNF-beta, TNF-R1, TNF-R2, FAS, and FASL was observed in luteal cells, whereas only TNF-beta staining was observed in endothelial cells. Several TNF-R components were influenced by LH and/or steroid ablation; notably, steroid ablation reduced (P < 0.05) luteal TNF-alpha, but not TNF-beta, mRNA levels, which was prevented by progestin treatment. In contrast, steroid ablation increased (P < 0.05) luteal cell immunostaining for FAS and FASL, which was reduced by progestin treatment. Thus, several members of the TNF R-ligand family are expressed in the primate CL in an LH- and/or progestin-dependent manner. Peak expression in the late luteal phase may signify a role for the TNF-R system in death receptor-mediated apoptosis during luteolysis.  相似文献   

3.
4.
5.
The corpus luteum (CL) is a transient endocrine organ that secretes progesterone to support early pregnancy. If implantation is unsuccessful, luteolysis is initiated. Extensive tissue remodeling occurs during CL formation and luteolysis. In this study, we have studied the possible involvement of MMP-2,-9,-14, and their inhibitors, TIMP-1,-2,-3 in the CL of cycling rhesus monkey at various stages by in situ hybridization, immunohistochemistry and microscopic assessment. The results showed that the MMP-2 mRNA and protein were mainly expressed in the endothelial cells at the early and middle stages of the CL development, while their expressions were observed in the luteal cells at the late stage during luteal regression. MMP-9 protein was detected in the CL at the early and middle stages, and obviously increased at the late stage. The expressions of MMP-14 and TIMP-1 mRNA were high at the early and late stages, and low at the middle stage. TIMP-2 mRNA was high throughout all the stages, the highest level could be observed at the late stage. The TIMP-3 production was detected throughout all the stages, but obviously declined during CL regression. MMP-9,-14 and TIMP-1,-2,-3 were mainly localized in the cytoplasm of the steroidogenic cells. The results suggest that the MMP/TIMP system is involved in regulation of CL development in the primate, and the coordinated expression of MMP-2,-14 and TIMP-1,-3 may have a potential role in the CL formation and the functional maintaining, while the interaction of MMP-2,-9,-14 and TIMP-1,-2,-3 might also play a role in CL regression at the late stage of CL development in the primate.  相似文献   

6.
A CL develops by extensive cellular reorganization and neovascularization of the remnants of the evacu-ated follicle following ovulation. In both rodent and primate, the development of CL is a rapid process with very high cellular turnover[1,2]. A CL is u…  相似文献   

7.
Angiogenic factors, like vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF), and their receptors, are strongly regulated during the development of bovine corpus luteum (CL). The aim of this study was to investigate real-time changes of these factors in luteal tissue of cows (n = 4-5 per group) in the mid-luteal phase (day 8-12) after intramuscular injection of the PGF2alpha-analog Cloprostenol. Before (control) and 2, 4, 12, 48, and 64 hr after prostaglandin (PG) injection, CL were collected by transvaginal ovariectomy. RT-PCR for VEGF, VEGF-receptor type 1 (VEGF-R1), VEGF-R2, acidic FGF (FGF-1), basic FGF (FGF-2), and FGF-receptor (FGF-R) was performed. Additionally, the protein concentration for VEGF was determined. The mRNA expression of VEGF and its two receptors (VEGF-R1 and -R2) was significantly downregulated during structural luteolysis (after 12 hr). VEGF protein concentration already significantly declined 2 hr after PGF2alpha. Surprisingly FGF-1 and FGF-2 were significantly and maximally upregulated during functional luteolysis (until 12 hr). Furthermore, FGF-R mRNA was significantly upregulated at 2 hr after PGF2alpha, when compared with the control group. During structural luteolysis, the expression of FGFs and their receptors was not significantly different from control, except FGF-2 mRNA, which was downregulated at 64 hr. We conclude that the cessation of VEGF-support for the CL plays a role during structural luteolysis, whereas FGFs seem to have a major impact on functional luteolysis. The possible role of these growth factors could be a transient counter-regulation of luteolysis, but also an involvement in preventing inflammatory reactions during luteal regression.  相似文献   

8.
Evidence suggests the insulin-like growth factor (IGF) system may be involved in luteal maintenance and regression. However, previous studies have only investigated a few components of the system, primarily in bovine and non-ruminant species. The present study investigated gene expression for the components of the IGF system in ovine corpora lutea (CL) at various key stages of the oestrous cycle (Experiment 1), and the possible regulatory effects of LH on IGF gene expression in ovine CL using a GnRH antagonist model system (Experiment 2). Experiment 1 revealed that IGF-I (P<0.001), type I (P=0.008) and II (P=0.005) IGF-Rs and IGFBP-5 (P<0.05) mRNA levels were significantly elevated in early regressing CL. In contrast, IGF-II levels were high in CL but did not vary throughout the oestrous cycle, while IGFBP-2, -3, -4 and -6 mRNA levels were highest throughout the luteal phase but lower in regressing CL (P<0.05). IGFBP-1 mRNA could not be detected in any CL. Abrogation of LH action following GnRH antagonist administration (Experiment 2) resulted in a significant increase in expression for IGF-I (P<0.001), type II IGF-R (P=0.004) and IGFBP-5 (P<0.05) after only 12h, but these increases were transient. IGF-II, type I IGF-R and IGFBP-2, -3, -4 and -6 mRNA levels remained unaffected by GnRH antagonist treatment. These data highlight the role that LH plays in regulating IGF-I gene expression and lends further support that IGF-I may be a key luteotrophic factor in sheep.  相似文献   

9.
10.
11.
12.
13.
14.
Although estradiol-17 beta (E2) induces premature regression of the corpus luteum (CL), its role in spontaneous luteolysis which occurs at the end of the nonfertile cycle has not been demonstrated. We compared the effects of an estrogen antagonist on E2-induced and spontaneous luteolysis by administering clomiphene (10 mg/day) to cynomolgus macaques during the luteal phase in the presence and absence of exogenous E2 (supplied by subcutaneous Silastic implants). Other animals received either vehicle or E2 implants. Luteal function was assessed by progesterone concentrations and luteal phase length. Clomiphene maintained normal luteal function in the presence of luteolytic levels of E2 in five of six monkeys. However, clomiphene alone did not prolong luteal function beyond that observed in monkeys receiving vehicle. To assess the direct effect of clomiphene on the CL, we incubated monkey luteal cells with human chorionic gonadotropin and clomiphene, E2, or clomiphene plus E2. Clomiphene (1500 ng/ml) alone and E2 (1000 ng/ml) alone significantly (P less than 0.05) inhibited progestin production. Clomiphene and E2 together depressed progestin production to an even greater extent. The data suggest that the mechanisms involved in E2-induced and spontaneous luteolysis differ.  相似文献   

15.
Prolactin (PRL) is known to be synthesized not only in the anterior pituitary, but also in other organs including the ovary. Among its various functions, PRL is regarded as the most important constituent of the luteotropic complex in rodents and pigs. The purpose of the present study was to determine whether PRL is produced locally in bovine corpus luteum (CL) and to determine its possible roles in CL. In the present study, we examined changes during the luteal phase in (1) the expressions of PRL and PRL receptors (long form: l-PRLR, short form: s-PRLR) in CL and (2) the localization of PRL in CL. We also measured the levels of PRL mRNA in cultured luteal cells and luteal endothelial cells. Furthermore, the effect of PRL on progesterone (P4) and prostaglandin (PG) F2alpha production by cultured bovine luteal cells was examined. Semiquantitative RT-PCR analysis revealed that the mRNAs for PRL and its two receptors, l- and s-PRLR, were expressed in all luteal stages examined. PRL mRNA expression was less in the regressed stage (days 19-21 after ovulation) than in the other stages. Both l-PRLR and s-PRLR mRNA expressions were higher in the late luteal stage (days 15-17) than in the other stages, while the ratio of l-PRLR to s-PRLR was less in the regressed stage than in the other stages. PRL mRNA was also detected in cultured luteal cells and luteal endothelial cells. PRL protein was immunohistochemically detected only in CL of the mid- and regressed stages. It was detected in smooth muscle cells of the intraluteal arterioles and endothelial cells but not in luteal cells and other cell types of CL. Exposure of cultured luteal cells obtained from mid-stage CL (days 8-12) to bovine PRL (100, 200 ng/ml) for 24 hr did not affect P4 and PGF2alpha production by the cells. The present study demonstrates for the first time the expressions of PRL and PRLR mRNA in bovine CL throughout the luteal phase. The overall results strongly suggest that the bovine CL is an extrapituitary site of PRL production.  相似文献   

16.
Practical estrus synchronization schemes are needed for mares. The Ovsynch synchronization protocol for cattle involves the administration of gonadotropin-releasing hormone (GnRH) to induce ovulation or luteinization of dominant follicles during the luteal phase and prostaglandin 7 days later to cause regression of any luteal tissue and development of a preovulatory follicle. An Ovsynch-type synchronization program potentially could be developed for horses if luteinization or ovulation of diestrous follicles occurred in response to GnRH treatment. The objective of this study was to determine if administration of the GnRH agonist, deslorelin acetate, on Day 8 or 12 postovulation would induce luteinization or ovulation of diestrous follicles in the mare. The model used was cycling mares maintained in an artificial luteal phase by administration of a synthetic progestin following prostaglandin-induced luteal regression. On the day of ovulation, 21 light horse mares were randomly assigned to one of three groups: (1) no GnRH, altrenogest from Days 5 to 15 postovulation with prostaglandin on Day 15; (2) GnRH on Day 8, altrenogest from Days 5 to 15 with prostaglandin given on Day 6 to induce luteolysis of the primary corpus luteum, an implant containing 2.1mg of deslorelin acetate inserted on Day 8 and removed on Day 10, with a second prostaglandin treatment on Day 15; (3) GnRH on Day 12, altrenogest from Days 9 to 19, prostaglandin on Day 10, a deslorelin acetate implant injected on Day 12 (subsequently removed on Day 14), and a second dose of prostaglandin administered on Day 19. Follicular development was monitored every other day from Day 5 until a 30-mm sized follicle was observed, and then daily to detection of ovulation. Serum progesterone concentrations were determined daily for 12 consecutive days. Progesterone concentrations in Group 1 remained elevated until approximately Day 12 postovulation. Prostaglandin administration on Day 15 resulted in complete luteolysis in all seven mares. In Group 2, progesterone concentrations in six of seven mares declined to baseline after prostaglandin treatment. No increase in serum progesterone was noted in any of the six mares that were given GnRH on Day 8, including three mares that had diestrous follicles > or =30mm in diameter at the time of treatment. Similarly, progesterone concentrations in six of seven mares in Group 3 declined to baseline after prostaglandin and there was no increase in progesterone after administration of GnRH on Day 12. No ultrasound evidence of luteinization or ovulation of diestrous follicles were noted after GnRH administration in any mares of Group 2 or 3. In conclusion, administration of the GnRH agonist deslorelin acetate to mares failed to induce luteinization or ovulation of diestrous follicles. Consequently, the Ovsynch program (as used in cattle) has little efficacy for synchronization of estrus in mares.  相似文献   

17.

Background  

In higher primates, although LH/CG play a critical role in the control of corpus luteum (CL) function, the direct effects of progesterone (P4) in the maintenance of CL structure and function are unclear. Several experiments were conducted in the bonnet monkey to examine direct effects of P4 on gene expression changes in the CL, during induced luteolysis and the late luteal phase of natural cycles.  相似文献   

18.
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation.  相似文献   

19.
20.
Prostaglandins (PG) are produced by the corpus luteum (CL) of the rhesus monkey and may be involved in luteal regulation. Intracellular calcium has also been implicated as a mediator of luteolysis in domestic and laboratory species; however, its role in primate luteal function has not been investigated. The objectives of this study were to characterize temporal changes in basal and stimulated luteal PG production by CL of rhesus monkeys, and to examine the effects of calcium ionophore (CaI) on basal and gonadotropin-stimulated progesterone (P) production by the CL. CL were collected at various times after the estimated day of the luteinizing hormone (LH) surge: 5 days (early luteal phase, n = 4), 8-10 days (mid-luteal phase, n = 8), and 12-14 days (late luteal phase, n = 5). Dispersed luteal cells were incubated in the absence and presence of CaI, or with human chorionic gonadotropin (hCG) plus CaI at 37 degrees C for 8 h. PG and P concentrations in the medium were measured by radioimmunoassay. PGE2 and 6-keto-PGF1 alpha production decreased (p less than 0.05) from early luteal phase to mid-luteal phase and remained lower (p less than 0.05) during late luteal phase for all treatment groups. PGF2 alpha production decreased (p less than 0.05) from early to mid-luteal phase and rebounded in late luteal phase to the same level (p greater than 0.05) found in early luteal phase. CaI stimulated (p less than 0.05) basal PG production. The degree of stimulation was similar throughout the luteal phase (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号