首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Both the formation and decay of phosphorylated ATPase, and Ca2+ release from and rebinding to transport sites alpha sites) on the enzyme have been investigated in the pre- and post-steady states by means of rapid mixing acid quench technique and a stopped flow technique, respectively. At a relatively high concentration of enzyme (10 muM protein) and a low concentration of free Ca2+ (1.42 muM), rapid changes in the Ca2+ affinity of the transport sites could be monitored with the use of a Ca2+ indicator dye, Arsenazo III. As the enzyme becomes phosphorylated, Ca2+ is released. In the early stages, the ratio of Ca2+ released to acid-stable phosphoenzyme is less than 2, while at the maximum of Ca2+ release, which occurs later than the maximum phosphorylation, it is greater than 2. Assuming that phosphorylation of the enzyme releases both Ca2+ bound to it (Ikemoto, N. (1975) J. Biol. Chem. 250, 7219), these data are consistent with the sequential formation of two acid-stable intermediates differing in Ca2+ affinity and a third acid-labile phosphorylated species of low Ca2+ affinity. The changes in Ca2+ affinity are probably related to changes in the structure of the ATPase transport protein that are involved in the Ca2+ translocation in the intact sarcoplasmic reticulum. As the ATP is being used up, Ca2+ rebinding occurs concomitantly with the decay of phosphoenzyme. The comparison of the time courses of Ca2+ rebinding with that of dephosphorylation in the post-steady state suggests that interactions among phosphorylated and nonphosphorylated ATPase molecular may also be involved in the Ca2+ affinity changes.  相似文献   

2.
It has been suggested that vesicles derived from the sarcoplasmic reticulum of skeletal muscle contain Ca2+ channels which can be opened by interaction with sulfhydryl reagents such as Ag+ or Hg2+. We show that, in reconstituted vesicles containing the (Ca2+-Mg2+)-ATPase purified from sarcoplasmic reticulum as the only protein, the ATPase can act as a pathway for Ca2+ efflux and that Ag+ induces a rapid release of Ca2+ from such reconstituted vesicles. We also show that Ag+ has a marked inhibitory effect on the ATPase activity of the purified ATPase. We suggest that the (Ca2+-Mg2+)-ATPase can act as a pathway for rapid Ca2+ release from sarcoplasmic reticulum.  相似文献   

3.
Human liver microsomal fractions exhibit ATP-supported Ca2+ uptake which is half-maximal at 7 X 10(-7) M free Ca2+ in the presence of oxalate. Ca2+ uptake is coupled to a Ca2+-stimulated ATPase activity, which is half-maximal at 4 X 10(-7) M free Ca2+. Catalysis involves formation of an Mr = 116,000 phosphoprotein with stability characteristics of an acylphosphate compound suggested to represent a phosphoryl protein intermediate of the Ca2+-ATPase. Phosphorylation is half-maximal at about 10(-6) M free Ca2+. The Mr = 116,000 protein is highly susceptible to proteolysis with trypsin. The phosphorylated active site was localized in an Mr = 58,000 primary tryptic fragment and in an Mr = 34,000 subfragment. Analyses on the mechanism of the Ca2+-ATPase suggest the following reaction sequence: formation of an ADP-reactive phosphoenzyme (Mr = 116,000) with bound Ca2+, which can transphosphorylate its Pi to ADP, giving rise to synthesis of ATP; reversible transformation of the ADP-reactive phosphoenzyme into an isomer without bound Ca2+, which cannot further react with ADP; hydrolytical cleavage, probably catalyzed by Mg2+, of the ADP-unreactive phosphoenzyme with liberation of Pi. Comparison with the Ca2+-transport ATPase in sarcoplasmic reticulum of skeletal muscle led us to suggest that the Mr = 116,000 Ca2+-ATPase belongs to the class of E1P . E2P-ATPases and might be operative as a Ca2+-transport ATPase at the level of the endoplasmic reticulum in human liver.  相似文献   

4.
After the nucleotide binding domain in sarcoplasmic reticulum Ca2+-ATPase has been derivatized with fluorescein isothiocyanate at Lys-515, ATPase phosphorylation in the presence of a calcium gradient, with Ca2+ on the lumenal side but without Ca2+ on the cytosolic side, results in the formation of a species that exhibits exceptionally low probe fluorescence (Pick, U. (1981) FEBS Lett. 123, 131-136). We show here that, as long as the free calcium concentration on the cytosolic side is kept in the nanomolar range, this low fluorescence species is remarkably stable, even when the calcium gradient is subsequently dissipated by ionophore. This species is a Ca2+-free phosphorylated species. The kinetics of Ca2+ binding to it indicates that its transport sites are exposed to the cytosolic side of the membrane and retain a high affinity for Ca2+. Thus, in the ATPase catalytic cycle, an intrinsically transient phosphorylated species with transport sites occupied but not yet occluded must also have been stabilized by fluorescein isothiocyanate (FITC), possibly mimicking ADP. The low fluorescence mainly results from a change in FITC absorption. The Ca2+-free low fluorescence FITC-ATPase species remains stable after addition of thapsigargin in the absence or presence of decavanadate, or after solubilization with dodecylmaltoside. The remarkable stability of this phosphoenzyme species and the changes in FITC spectroscopic properties are discussed in terms of a putative FITC-mediated link between the nucleotide binding domain and the phosphorylation domain in Ca2+-ATPase, and the possible formation of a transition state-like conformation with a compact cytosolic head. These findings might open a path toward structural characterization of a stable phosphorylated form of Ca2+-ATPase for the first time, and thus to further insights into the pump's mechanism.  相似文献   

5.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

6.
The chemical treatment of sarcoplasmic reticulum vesicles with H2O2 affects both Ca2+ transport and the hydrolytic activity supported by the Ca2+-ATPase protein. Ca2+ transport was much more sensitive to inhibition than ATPase activity and the decrease in Ca2+ transport was not the result of an increase in membrane permeability. The Ca2+/Pi uncoupling can be attributed to the own catalytic mechanism of the enzyme. Under conditions of high uncoupling, Ca2+ binding to the transport sites was barely affected and accumulation of phosphorylated species during the enzyme cycling gave almost maximal levels. These are features defining intramolecular uncoupling mediated by a phosphorylated form of the enzyme. Severe inhibition of the hydrolytic activity was observed when higher peroxide concentrations and leaky vesicles were used. These experimental conditions diminished maximal Ca2+ binding and the steady-state phosphoenzyme level. The low hydrolytic activity can be ascribed to a decrease in the rate of enzyme dephosphorylation.  相似文献   

7.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

8.
(1) At ATP concentrations up to 30 micrometer addition of 0.5 mM MgCl2 in the reaction mixture increases both the rate of formation and the steady-state level of the phosphoenzyme of the Ca2+-ATPase from human red cell membranes. Under these conditions Mg2+ has no effect on the rate of dephosphorylation, which remains slow. (2) In the presence of Mg2+ the rate of dephosphorylation is increased 5 to 10 times by high (1 mM) concentrations of ATP. (3) Provided Mg2+ has reacted with the phosphoenzyme, acceleration of dephosphorylation by ATP takes place in the absence of Mg2+. This suggests that the role of Mg2+ on dephosphorylation is to convert the phosphoenzyme into a form that, after combination with ATP, reacts rapidly with water. (4) The results are consistent with the idea that combination of ATP at a non-catalytic site is needed for rapid dephosphorylation of the Ca2+-ATPase.  相似文献   

9.
Reversal of the cycle of sarcoplasmic reticulum ATPase starts from ATPase phosphorylation by Pi, in the presence of Mg2+, and leads to ATP synthesis. We show here that ATP can also be synthesized when Ca2+ replaces Mg2+. In the absence of a calcium gradient and in the presence of dimethyl sulfoxide, ATPase phosphorylation from Pi and Ca2+ led to the formation of an unstable phosphoenzyme. This instability was due to a competition between the phosphorylation reaction induced by Pi and Ca2+ and the transition induced by Ca2+ binding to the transport sites, which led to a conformation that could not be phosphorylated from Pi. Dimethyl sulfoxide and low temperature stabilized the calcium phosphoenzyme, which under appropriate conditions, subsequently reacted with ADP to synthesize ATP. Substitution of Co2+, Mn2+, Cd2+, or Ni2+ for Mg2+ induced ATPase phosphorylation from Pi, giving phosphoenzymes of various stabilities. However, substitution of Ba2+, Sr2+, or Cr3+ produced no detectable phosphoenzymes, under the same experimental conditions. Our results show that ATPase phosphorylation from Pi, like its phosphorylation from ATP, does not have a strict specificity for magnesium.  相似文献   

10.
Our recent study (Saiki, Y., and Ikemoto, N., Biochemistry 38, 3112-3119, 1999) suggests that Ca2+ release and re-uptake of the released Ca2+ are coordinated. The following results suggest that the coordination is mediated by the luminal Ca2+ ([Ca2+]lum) transient. Upon inducing the release of the passively loaded Ca2+ from the SR with polylysine, the luminal Ca2+ ([Ca2+]lum) first increased then decreased ([Ca2+]lum transient). The activity of the SR Ca2+ ATPase was monitored at different times after inducing Ca2+ release. The phosphoenzyme (EP) formation as determined by the MANT-fluorescence increased concurrently with the initial rapid increase in the [Ca2+]lum. EP decay (pumping turnover) was accelerated concurrently with a decrease of the [Ca2+]lum. The results suggest that the [Ca2+]lum transient serves as a mediator for the acceleration of the Ca2+ re-uptake occurring soon after the induction of Ca2+ release.  相似文献   

11.
The coupling of Ca2+ movements and phosphate fluxes as well as the time-dependent occurrence of sequential reaction intermediates in the forward mode of the Ca,Mg-dependent ATPase reaction have been investigated using leaky vesicles (A23187) in the presence of varying Ca2+, Mg2+, and K+ concentrations. The employed ATP concentration of 2 microM does not allow more than one reaction cycle to occur. The respective fractions of ADP-sensitive and ADP-insensitive phosphoenzyme have been determined. The chosen experimental conditions (0-1 degree C, pH 6.0, absence of solubilizers) allow a prolonged time of observation and exclude interfering alterations of coupling and binding parameters, respectively. It is shown that under the experimental conditions K+ interacts with at least four different reaction steps (phosphoenzyme formation, E1P----E2P transition, E2P hydrolysis, and E2----E1 transformation). Mg2+ represents the sole ionic co-factor for the formation of the substrate MgATP if it is present in high concentrations (5 mM). Additional Ca2+ is bound to the substrate as well as to unspecific sites otherwise occupied by Mg2+ if Mg2+ is reduced to 0.1 mM. In this case the E1P----E2P transition rate (including Ca2+ translocation and Ca2+ release from low-affinity sites) is little diminished. If, in the absence of K+, both Mg2+ and Ca2+ are deficient E2P hydrolysis is vastly retarded. We find Ca2+ release to occur time-coincidently with E1P formation and not concomitantly with the comparably slow appearance of E2P; the molar amount of Ca2+ released, however, rather agreed with that of E2P formed. This suggests that under the prevailing conditions of a high proton concentration, phosphoenzyme states containing occluded Ca2+ or Ca2+ bound to low-affinity sites are transitional and not detectable. Preliminary findings on this subject have been published by us and colleagues from this laboratory [Hasselbach, W., Agostini, B., Medda, P., Migala, A. & Waas, W. (1985) in The sarcoplasmic reticulum calcium pump: Early and recent developments critically overviewed (Fleischer, S. & Tonomura, Y., eds) pp. 19-49, Academic Press, Orlando].  相似文献   

12.
The rate of Ca2+ efflux was determined with 45Ca2+ -loaded sarcoplasmic reticulum vesicles (mainly with the light fraction of vesicles) at pH 6.5 and 0 degrees C. The efflux depended on external Ca2+, Mg2+, ATP and ADP, but it was not activated by AMP. The results indicate that the efflux is derived from Ca2+ -Ca2+ exchange mediated by the phosphoenzyme (EP) of membrane-bound Ca2+ -ATPase. EP was formed with Ca2+ -loaded vesicles (light fraction) under similar conditions without added ADP. The subsequent addition of EGTA and ADP induced triphasic EP dephosphorylation. Three species of EP (EP1, EP2, and EP3) were distinguished on the basis of this dephosphorylation kinetics, EP1, EP2, and EP3, corresponding to the first, second, and third phases of the dephosphorylation. Dephosphorylation of EP1 and EP2 resulted in stoichiometric ATP formation, while dephosphorylation of EP3 led to stoichiometric Pi liberation. The rate of Ca2+ efflux was compatible with that of EP2 dephosphorylation, whereas it was much lower than the rate of EP1 dephosphorylation and much higher than the rate of EP3 dephosphorylation. The intravesicular Ca2+ concentration dependence of the rate of EP2 dephosphorylation agreed with that of the rate of Ca2+ efflux. The results suggest that isomerization between EP1 and EP2 is the rate-limiting process in the Ca2+ -Ca2+ exchange and that EP3 is not involved in this exchange.  相似文献   

13.
ATP-dependent calcium uptake by isolated sarcoplasmic reticulum vesicles is inhibited by concentrations of free thapsigargin as low as 10(-10) M. This effect is due to primary inhibition of the Ca(2+)-dependent ATPase which is coupled to active transport. When binding of calcium to the activating sites of the enzyme is measured under equilibrium conditions in the absence of ATP, addition of thapsigargin produces strong inhibition. On the other hand, if [tau-32P]ATP is added to ATPase preincubated with Ca2+ under favorable conditions, significant levels of 32P-phosphorylated intermediate are still formed transiently, even in the presence of thapsigargin. The phosphoenzyme, however, decays rapidly as the calcium-enzyme complex is destabilized as a consequence of ATP utilization, and formation of the thapsigargin-enzyme complex is favored. Formation of the thapsigargin-enzyme complex is also favored by Ca2+ chelation with EGTA, with consequent inhibition of the enzyme reactivity to Pi (i.e. reverse of the ATPase hydrolytic reaction). Neither the Ca(2+)- and ATP-induced Ca2+ release from junctional sarcoplasmic reticulum nor the Ca(2+)- and calmodulin-dependent ATPase of plasma membranes (erythrocyte ghosts) were found to be altered by thapsigargin at such low concentrations.  相似文献   

14.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

15.
S Orlowski  P Champeil 《Biochemistry》1991,30(47):11331-11342
Using rapid filtration, we investigated the kinetics of release toward the lumen of sarcoplasmic reticulum vesicles of the two Ca2+ ions transported by the Ca(2+)-dependent ATPase of these vesicles. Release rates at 20 degrees C were measured by three methods, with vesicles previously made leaky with an ionophore. First, we measured the rate at which 45Ca2+ bound to ATPase approached its steady-state level after addition of ATP to the 45Ca(2+)-equilibrated ATPase. At pH 6 in the absence of potassium, the observed kinetics did not reveal any very fast phase of 45Ca2+ dissociation from phosphorylated ATPase. Second, we measured the kinetics of 45Ca2+ dissociation from phosphorylated ATPase in a "chase" experiment, by isotopic dilution of calcium under turnover conditions in the presence of potassium. We found that these kinetics were essentially monophasic. Moreover, when they were measured in the presence of a high concentration of calcium, designed to saturate the low-affinity calcium transport sites on the lumenal side of the ATPase, they only departed slightly from monophasic behavior, irrespective of the experimental pH (pH 6, 7, or 9). This small perturbation by high calcium concentrations of the observed dissociation kinetics was attributed to ADP-facilitated rapid exchange of 40Ca2+ for Mg2+ at the catalytic site of phosphorylated ATPase. The third method was based on the fact that phosphorylation-induced 45Ca2+ occlusion occurred faster than 45Ca2+ dissociation from nonphosphorylated ATPase: here, we measured the rate of 45Ca2+ internalization on addition to 45Ca(2+)-saturated ATPase of an unlabeled ATP-containing medium. This method allowed separate observation of the dissociation kinetics of each of the two 45Ca2+ ions bound to phosphorylated ATPase, after either one or the other had been labeled by a preliminary partial isotopic exchange in the non-phosphorylated state of the ATPase. We found that after ATP-induced phosphorylation, the two 45Ca2+ ions dissociated toward the lumenal medium with virtually identical rate constants; this was observed under different ionic and pH conditions and also in the presence of a high Ca2+ concentration. As a control, the same partial isotopic exchange procedure allowed us to confirm that, in contrast, when ATP was absent from the final dissociation medium, the two 45Ca2+ ions dissociated from nonphosphorylated ATPase toward the cytoplasmic medium at different rates, the one bound more deeply only dissociating after a lag period corresponding to dissociation of the superficial one.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Formation of the phosphorylated intermediate (ECaP) of the human erythrocyte Ca2+-stimulated ATPase (Ca2+-ATPase) was more rapid and reached steady state sooner at 400 microM-Ca2+ than at 1 microM-Ca2+. Calmodulin increased the apparent rate of ECaP formation at 1 microM-Ca2+, whereas at 400 microM-Ca2+, calmodulin decreased the steady-state level of the ECaP without affecting its apparent rate of formation. Removal of endogenous Mg2+ with trans-1,2-diaminocyclohexane-NNN'N'-tetra-acetic acid, which decreased both the velocity and Ca2+-sensitivity of the Ca2+-ATPase, did not alter the Ca2+-sensitivity or the apparent rate of formation of ECaP. ECaP formation at high Ca2+ concentrations was not affected by Mg2+ concentrations as high as 1 mM, and the ECaP could be dephosphorylated by ADP and ATP along either the forward or reverse pathways. The results suggest that high Ca2+ concentrations inhibit Ca2+-ATPase activity by preventing dephosphorylation of the E2P complex, rather than by inhibition of the transformation from E1CaP ('high-Ca2+-affinity' ECaP) to E2CaP ('lower-energy' ECaP).  相似文献   

17.
Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH   总被引:1,自引:0,他引:1  
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.  相似文献   

18.
The activation of the Ca2+-independent (basal) ATPase from rat skeletal muscle microsomes is demonstrated in the presence of enough Ca2+ to provide the simultaneous activation of the (Ca2+ + Mg2+)-ATPase. It was achieved taking advantage of the delayed inorganic phosphate (Pi) release due to the formation of a phosphoenzyme complex during the Ca2+-dependent enzymatic cycle, which is evidenced in fast experiments. The microsomes were immobilized on a filter and perfused at constant flow with an incubation medium which was briefly interrupted with a pulse of appropriate reactants to activate the ATPases, at 2 degrees C. Successive samples were collected after passing through the filter, at approx. 0.1 s intervals. The Pi effluent profile coincides with the pattern of the pulse when it activates only the Ca2+-independent ATPase, it appears delayed when the pulse activates only extra Pi production by the (Ca2+ + Mg2+)-ATPase, and it includes a rapid and a delayed component when both Ca2+-independent and Ca2+-dependent ATPases are activated simultaneously by the pulse.  相似文献   

19.
Unidirectional Ca2+ fluxes (influx and efflux), supported by ATP as a phosphate-donor substrate, were measured without alteration of the lumenal Ca2+ content in longitudinal sarcoplasmic reticulum vesicles. The referred fluxes are dependent on extravesicular Ca2+, ATP and ADP. They are unaffected by ruthenium red but inhibited by quercetin. The Ca2+ fluxes at steady state are drastically diminished when ATP is substituted by acetylphosphate although the addition of 10 microM ADP increases the apparent rate constants more than eight fold. The observed fluxes appear to be dependent on Ca2(+)-ATPase phosphoenzyme transitions. The results indicate that: (a) the slow Ca2+ release, due to the passive permeability of the membrane, is a minor component of the total Ca2+ efflux, and (b) the ATPase protein is basically operating as a Ca2+/Ca2+ exchanger at steady state. Kinetic resolution of the Ca2+ fluxes, measured by isotopic tracer and rapid filtration techniques can be recreated by computer simulation of the ATPase reaction cycle featuring some modifications to account for the fast Ca2+/Ca2+ exchange and the uncoupling effect observed at steady state.  相似文献   

20.
The effects of intra- and extravesicular calcium and magnesium ions on the hydrolysis of the phosphoenzyme (EP) intermediate formed in the reaction of Ca2+,Mg2+-dependent ATPase of the sarcoplasmic reticulum were investigated. The rate constants of EP hydrolysis were measured under conditions that allowed a single turnover of ATP hydrolysis to minimize the increase in calcium concentration inside the vesicles. The EP formed during a single turnover was hydrolyzed biphasically and could be resolved into fast- and slow-decomposing components. When free Mg2+ outside the vesicles was chelated by adding excess EDTA, EP could also be kinetically resolved into two components; EDTA-sensitive EP, which could be quickly decomposed by adding EDTA, and EDTA-insensitive EP, which could be prevented from decomposing by adding EDTA. The amount of EDTA-sensitive EP decreased rapidly during the initial phase of the reaction, while that of EDTA-insensitive EP decreased slowly with the same rate constant as that of the slow-decomposing EP. These results showed that the biphasic time course of EP hydrolysis was caused by the formation of EDTA-sensitive and -insensitive EP during the reaction. The time course of EP hydrolysis could be quantitatively analyzed in terms of the following reaction mechanism. (formula; see text) The decomposition of EDTA-insensitive EP required Mg2+ outside the vesicles and was competitively inhibited by extravesicular Ca2+. The decomposition of EDTA-sensitive EP was inhibited by Ca2+ inside the vesicles but not by external Ca2+. The linear relationships between the inverse of the rate constants of EP decomposition during the initial phase and the intravesicular CaCl2 concentrations suggested that decomposition of EDTA-sensitive EP was inhibited by the binding of 1 mol of intravesicular Ca2+ to 1 mol of EP. Furthermore, Mg2+ inside the vesicles scarcely affected the inhibition of EP hydrolysis by intravesicular Ca2+. These results suggested that magnesium ions are not counter-transported during the active transport of calcium by SR vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号