首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.  相似文献   

2.
Some primitive meteorites are carbon-rich objects containing a variety of organic molecules that constitute a valuable record of organic chemical evolution in the universe prior to the appearance of microorganisms. Families of compounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-related compounds and poorly defined high-molecular weight macromolecules. A variety of environments are required in order to explain this organic inventory, including interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such organic materials were delivered to the Earth via a late accretion, thereby providing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic content of primitive meteorites and their relevance to the build up of biomolecules.  相似文献   

3.
Biology uses essentially 20 amino acids for its coded protein enzymes, representing a very small subset of the structurally possible set. Most models of the origin of life suggest organisms developed from environmentally available organic compounds. A variety of amino acids are easily produced under conditions which were believed to have existed on the primitive Earth or in the early solar nebula. The types of amino acids produced depend on the conditions which prevailed at the time of synthesis, which remain controversial. The selection of the biological set is likely due to chemical and early biological evolution acting on the environmentally available compounds based on their chemical properties. Once life arose, selection would have proceeded based on the functional utility of amino acids coupled with their accessibility by primitive metabolism and their compatibility with other biochemical processes. Some possible mechanisms by which the modern set of 20 amino acids was selected starting from prebiotic chemistry are discussed.  相似文献   

4.
The atmosphere of the Earth at the time of its formation is now generally believed to have been reducing, an idea proposed by Oparin and extensively discussed by Urey. This atmosphere would have contained CH4, N2 with traces of NH3, water and hydrogen. Only traces of NH3 would have been present because of its solubility in water. UV light and electric discharges were the major sources of energy for amino acid synthesis, with electric discharges being the most efficient, although most other sources of energy also give amino acids.The first prebiotic electric discharge synthesis of amino acids showed that surprisingly high yields of amino acids were synthesized. Eleven amino acids were identified, four of which occur in proteins. Hydroxy acids, simple aliphatic acids and urea were also identified. These experiments have been repeated recently, and 33 amino acids were identified, ten of which occur in proteins, including all of the hydrophobic amino acids.Methionine can be synthesized by electric discharges if H2S or CH3SH is added to the reduced gases. The prebiotic synthesis of phenylalanine, tyrosine and trytophan involves pyrolysis reactions combined with plausible solution reactions.Eighteen amino acids have been identified in the Murchison meteorite, a type II carbonaceous chondrite, of which six occur in proteins. All of the amino acids found in the Murchison meteorite have been found among the electric discharge products. Furthermore, the ratios of amino acids in the meteorite show a close correspondence to the ratios from the electric discharge synthesis, indicating that the amino acids on the parent body of the carbonaceous chondrites were synthesized by electric discharges or by an analogous process.  相似文献   

5.
The action of an electric discharge on reduced gas mixtures such as H2O, CH4 and NH3 (or N2) results in the production of several biologically important organic compounds including amino acids. However, it is now generally held that the early Earth’s atmosphere was likely not reducing, but was dominated by N2 and CO2. The synthesis of organic compounds by the action of electric discharges on neutral gas mixtures has been shown to be much less efficient. We show here that contrary to previous reports, significant amounts of amino acids are produced from neutral gas mixtures. The low yields previously reported appear to be the outcome of oxidation of the organic compounds during hydrolytic workup by nitrite and nitrate produced in the reactions. The yield of amino acids is greatly increased when oxidation inhibitors, such as ferrous iron, are added prior to hydrolysis. Organic synthesis from neutral atmospheres may have depended on the oceanic availability of oxidation inhibitors as well as on the nature of the primitive atmosphere itself. The results reported here suggest that endogenous synthesis from neutral atmospheres may be more important than previously thought. Stanley L. Miller died May 20, 2007.  相似文献   

6.
Prebiotic synthesis in atmospheres containing CH4, CO,and CO2   总被引:2,自引:0,他引:2  
The prebiotic synthesis of organic compounds using a spark discharge on various simulated primitive earth atmospheres at 25 degrees C has been studied. Methane mixtures contained H2 + CH4 + H2O + N2 + NH3 with H2/CH4 molar ratios from 0 to 4 and pNH3 = 0.1 torr. A similar set of experiments without added NH3 was performed. The yields of amino acids (1.2 to 4.7% based on the carbon) are approximately independent of the H2/CH4 ratio and whether NH3 was present, and a wide variety of amino acids are obtained. Mixtures of H2 + CO + H2O + N2 and H2 + CO2 + H2O + N2, with and without added NH3, all gave about 2% yields of amino acids at H2/CO and H2/CO2 ratios of 2 to 4. For a H2/CO2 ratio of 0, the yield of amino acids is extremely low (10(-3)%). Glycine is almost the only amino acid produced from CO and CO2 model atmospheres. These results show that the maximum yield is about the same for the three carbon sources at high H2/carbon ratios, but that CH4 is superior at low H2/carbon ratios. In addition, CH4 gives a much greater variety of amino acids than either CO or CO2. If it is assumed that an abundance of amino acids more complex than glycine was required for the origin of life, then these results indicate the requirement for CH4 in the primitive atmosphere.  相似文献   

7.
The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9×107 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple startng materials.  相似文献   

8.
Bioenergetics is central to our understanding of living systems, yet has attracted relatively little attention in origins of life research. This article focuses on energy resources available to drive primitive metabolism and the synthesis of polymers that could be incorporated into molecular systems having properties associated with the living state. The compartmented systems are referred to as protocells, each different from all the rest and representing a kind of natural experiment. The origin of life was marked when a rare few protocells happened to have the ability to capture energy from the environment to initiate catalyzed heterotrophic growth directed by heritable genetic information in the polymers. This article examines potential sources of energy available to protocells, and mechanisms by which the energy could be used to drive polymer synthesis.Previous research on life''s origins has for the most part focused on the chemistry and energy sources required to produce the small molecules of life—amino acids, nucleobases, and amphiphiles—and to a lesser extent on condensation reactions by which the monomers can be linked into biologically relevant polymers. In modern living cells, polymers are synthesized from activated monomers such as the nucleoside triphosphates used by DNA and RNA polymerases, and the tRNA-amino acyl conjugates that supply ribosomes with activated amino acids. Activated monomers are essential because polymerization reactions occur in an aqueous medium and are therefore energetically uphill in the absence of activation.A central problem therefore concerns mechanisms by which prebiotic monomers could have been activated to assemble into polymers. Most biopolymers of life are synthesized when the equivalent of a water molecule is removed to form the ester bonds of nucleic acids, glycoside bonds of polysaccharides, and peptide bonds in proteins. In life today, the removal of water is performed upstream of the actual bond formation. This process involves the energetically downhill transfer of electrons, which is coupled to either substrate-level oxidation or generation of a proton gradient that in turn is the energy source for the synthesis of anhydride pyrophosphate bonds in ATP. The energy stored in the pyrophosphate bond is then distributed throughout the cell to drive most other energy‐dependent reactions. This is a complex and highly evolved process, so here we consider simpler ways in which energy could have been captured from the environment and made available for primitive versions of metabolism and polymer synthesis. Because the atmosphere of the primitive Earth did not contain appreciable oxygen, this review of primitive bioenergetics is limited to anaerobic sources of energy.  相似文献   

9.
Effectors of amino acid transport processes in animal cell membranes   总被引:1,自引:0,他引:1  
Various effectors, which act upon ion gradients, protein synthesis, membrane components or cellular functional groups, have been employed to provide insights into the nature of amino acid-membrane transport processes in animal cells. Such effectors, for example, include ions, hormones, metabolites and various organic reagents and their judicious use has allowed the following list of conclusions. Sodium ion has been found to stimulate amino acid transport in a wide variety of cell systems, although depending on the tissue and/or substrate, this ion may have no effect on such transport, or even inhibit it. Amino acid transport can be stimulated in some cell systems by other ions such as K+, Li+, H+ or Cl-. Both H+ and K+ have been found to be inhibitory in other systems. Amino acid transport is dependent in many cell systems upon an inwardly directed Na+ gradient and is stimulated by a membrane potential (negative cell interior). In some cell systems an inwardly directed Cl- and H+ gradient or an outwardly directed K+ gradient can energize transport. Structurally dissimilar effectors such as ouabain, Clostridium enterotoxin, aspirin and amiloride inhibit amino acid transport presumably through dissipation of the Na+ gradient. Inhibition by certain sugars or metabolic intermediates of the tricarboxylic acid cycle may compete with the substrate for the energy of the Na+ gradient or interact with the substrate at the carrier level either allosterically or at a common site. Stimulation of transport by other sugars or intermediates may result from their catabolism to furnish energy for transport. Insulin and glucagon stimulate transport of amino acids in a variety of cell systems by a mechanism which involves protein synthesis. Microtubules may be involved in the regulation of transport by insulin or glucagon. Some reports also suggest that insulin has a direct effect on membranes. In addition, a number of growth hormones and factors have stimulatory effects on amino acid transport which are also mediated by protein synthesis. Steroid hormones have been noted to enhance or diminish transport of amino acids depending on the nature of the hormone. These agents appear to function at the level of protein synthesis. While stimulation may involve increased carrier synthesis, inhibition probably involves synthesis of a labile protein which either decreases the rate of synthesis or increases the rate of degradation of a component of the transport system.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Proton irradiation of simulated primitive earth atmosphere was performed, and amino acids and imidazole were analyzed. A mixture of carbon monoxide and nitrogen over water was irradiated by high energy protons (3 MeV, 0.6 µA) generated by a Van de Graaff accelerator for 2–5 h. Various kinds of proteinous and non-proteinous amino acids were detected in the irradiation products. Imidazole present in the irradiation products was also detected by high-performance liquid chromatography and mass spectrometry. The present results suggest that compounds of biological importance such as amino acids could be synthesized from primitive earth atmosphere by radiation of cosmic rays and/or solar flare particles.  相似文献   

11.
The chemistry induced by atmospheric pressure DC discharges above a water surface in CO(2)/N(2)/H(2)O mixtures was investigated. The gaseous mixtures studied represent a model prebiotic atmosphere of the Earth. The most remarkable changes in the chemical composition of the treated gas were the decomposition of CO(2) and the production of CO. The concentration of CO increased logarithmically with the increasing input energy density and an increasing initial concentration of CO(2) in the gas. The highest achieved concentration of CO was 4.0 +/- 0.6 vol. %. The production of CO was crucial for the synthesis of organic species, since reactions of CO with some reactive species generated in the plasma, e. g. H* or N* radicals, were probably the starting point in this synthesis. The presence of organic species (including the tentative identification of some amino acids) was demonstrated by the analysis of solid and liquid samples by high-performance liquid chromatography, infrared absorption spectroscopy and proton-transfer-reaction mass spectrometry. Formation of organic species in a completely inorganic CO(2)/N(2)/H(2)O atmosphere is a significant finding for the theory of the origins of life.  相似文献   

12.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.  相似文献   

13.
Microorganisms can initiate the degradation of organic compounds by oxygenation reactions that require the investment of energy and electrons. This diversion of energy and electrons away from synthesis reactions leads to decreased overall cell yields. A thermodynamic method was developed that improves the accuracy of cell yield prediction for compounds degraded through pathways involving oxygenation reactions. This method predicts yields and stoichiometry for each step in the biodegradation pathway, thus enabling modeling a multi-step biodegradation process in which oxygenations occur and intermediates may persist. EDTA and benzene biodegradation are presented as examples. The method compares favorably with other yield prediction methods while providing additional information of yields for intermediates produced in the degradation pathway.  相似文献   

14.
DNA-directed synthesis represents a powerful new tool for molecular discovery. Its ultimate utility, however, hinges upon the diversity of chemical reactions that can be executed in the presence of unprotected DNA. We present a solid-phase reaction format that makes possible the use of standard organic reaction conditions and common reagents to facilitate chemical transformations on unprotected DNA supports. We demonstrate the feasibility of this strategy by comprehensively adapting solid-phase 9-fluorenylmethyoxycarbonyl–based peptide synthesis to be DNA-compatible, and we describe a set of tools for the adaptation of other chemistries. Efficient peptide coupling to DNA was observed for all 33 amino acids tested, and polypeptides as long as 12 amino acids were synthesized on DNA supports. Beyond the direct implications for synthesis of peptide–DNA conjugates, the methods described offer a general strategy for organic synthesis on unprotected DNA. Their employment can facilitate the generation of chemically diverse DNA-encoded molecular populations amenable to in vitro evolution and genetic manipulation.  相似文献   

15.
多官能化手性氨基酸及其衍生物是一类重要的手性药物以及合成手性药的关键中间体,如现在大量用于临床的左甲状腺素、赖诺普利、阿莫西林、缬沙坦、头孢氨苄以及青霉素等。进行多官能化手性氨基酸类化合物的不对称催化合成,可为新型化学药的设计与发现开辟新的视野。噁唑烷酮(Azlactone)被证明是合成四取代氨基酸衍生物的优秀底物。可通过不对称催化手段向其中引入需要的基团,再经多取代的噁唑烷酮直接开环得到一系列的目标化合物。本文主要综述了近年来基于恶唑烷酮的不对称催化反应构建四取代氨基酸类化合物的研究。  相似文献   

16.
Amino acids produced from protein degradation are the major energy source for differentiation and aging in Dictyostelium discoideum. Considering the reactions involved in the conversion of amino acids from an average protein into tricarboxylic acid cycle intermediates, a route from a cycle intermediate (probably malate) to acetyl coenzyme A is required for the complete utilization of amino acids. Citrate was isolated from cells pulse-labeled with (14)C-labeled amino acids and was cleaved with citrate lyase. When cells were pulse-labeled with [U-(14)C]-glutamate the specific radioactivity of the acetate and oxaloacetate portions of citrate were consistent with the conclusion that one-third of the carbon flowing through the tricarboxylic acid cycle is removed for the synthesis of acetyl coenzyme A. The data were also consistent with the patterns of carbon flux required to maintain steady-state levels of cycle intermediates in cells catabolizing amino acids. It is suggested that the malic enzyme (EC 1.1.1.40) catalyzes the synthesis of acetyl coenzyme A from malate and is responsible for the observed citrate labeling pattern. In cell extracts the activity of this enzyme increased markedly with the onset of differentiation. The properties of partially purified (40-fold) malic enzyme isolated at culmination indicated that the enzyme was allosteric and was positively affected by aspartate and glutamate. Thus, amino acid production from protein degradation would stimulate a reaction essential for the efficient utilization of these amino acids for energy.  相似文献   

17.
A new series of Se-substituted phenylalanine derivatives has been synthesized having the para position of the phenyl ring substituted by selenocyanate (-SeCN), seleninic acid (-SeO(2)H), or selenol (-SeH) functional groups. The starting material for synthesis was 4'-aminophenylalanine, which is readily available in DL- or L- forms. Selenium was incorporated into the ring by reacting the unprotected amino acid with nitrous acid, followed by reaction of the diazotized aromatic amine with potassium selenocyanate at pH 4-5 to give phenylalanine selenocyanate. The selenocyanate derivative was converted to the selenol directly by reduction with sodium borohydride, or oxidized to the seleninic acid, which was then reduced to the selenol. Alkylation of the selenol ('selenotyrosine') gave the selenoether derivatives of phenylalanine [(Phe-SeR), R=methyl or allyl], and air oxidation of the selenol gave the diselenide. Mild oxidation of the selenoether 4'-(MeSe)Phe with peroxide gave the selenoxide derivative, 4'-[Se(O)Me]. Because of their stability and useful redox properties, aromatic selenoamino acids can be used as synthetic analogues to increase chemical functionality in proteins or peptides, and have potential pharmaceutical or nutritional applications. The possibility that aromatic selenoamino acids could be formed metabolically through reactions of reactive selenium intermediates with aromatic amino acid residues is discussed.  相似文献   

18.
It has been observed that beta-hydroxy-alpha-amino acids are transformed into other amino acids, when heated in dilute solutions with phosphorous acid, phosphoric acid or their ammonium salts. It has been shown that as in the case of previously reported glycine-aldehyde reactions, glycine also reacts with acetone to give beta-hydroxyvaline under prebiologically feasible conditions. It is suggested, therefore, that the formation of beta-hydroxy-alpha-amino acids and their transformation to other amino acids may have been a pathway for the synthesis of amino acids under primitive earth conditions.  相似文献   

19.
Li Z  Fu H  Gong H  Zhao Y 《Bioorganic chemistry》2004,32(3):170-177
The reactive intermediates of pentacoordinated phosphoranes with amino acids (P(5)-AA) as building blocks, which were obtained by the reaction of O-phenylene phosphorochloridate with N,O-bis(trimethylsilyl)amino acids, were linked to a solid-phase support containing a hydroxymethyl polystyrene functional group. The first amino acid residue was coupled to the solid-phase support after washing the resin with organic solvent. Repeating the procedure led to oligopeptides linked on the resin. A series of free oligopeptides including tetra-Gly, di-Val, tri-Val, di-Leu, di-Phe, and Phe-Leu were obtained after cleavage from solid-phase support. The structure of these oligopeptides were determined by IR, (1)H NMR, FAB-MS, and HPLC.  相似文献   

20.
Diisocyanates, reactive compounds used in plastics industry and potent occupational allergens, readily bind to proteins both in vitro and in vivo, however, the pattern of adducts with individual amino acids has not been investigated systematically. In this study, potential of the proteinogenic amino acid residues for carbamoylation with 2,4-toluenediisocyanate (2,4-TDI) and hexamethylenediisocyanate (HDI) was evaluated. The diisocyanates were incubated in an in vitro system (buffer pH 7.4/dioxane 50:50) with: (a) a series of Nalpha-benzyloxycarbonyl amino acids (Z-amino acids) and N-acetylcysteine (Ac-Cys), model compounds for non-N-terminal amino acids of the protein chain; (b) dipeptides Val-Phe and Asp-Phe, model compounds for N-termini of globin and albumin, respectively. Reactivity of the compounds tested, evaluated from their depletion during incubation with the diisocyanates (measured by HPLC), was in the order: Ac-Cys = Asp-Phe > Val-Phe = Nalpha-Z-Lys > Nalpha-Z-His for 2,4-TDI, and Ac-Cys > Asp-Phe > Val-Phe = Nalpha-Z-Lys > Nalpha-Z-His > N-Z-Tyr for HDI, however, the adducts with Ac-Cys were unstable. Reactions of other amino acid residues (e.g. Ser, Thr, Met, Trp, Arg, Asn, Gln) with 2,4-TDI and HDI were not observed. Thus, N-terminal amino acids and Lys residues are likely to produce most abundant adducts with diisocyanates in proteins. Further, three amino compounds with increasing pKa values (Val-Phe, Val and Nalpha-Z-Lys) were incubated with 2,4-TDI and N-acetyl-S-[4-(2-amino)tolylcarbamoyl]cysteine, a 2,4-TDI-derived thiocarbamate with carbamoylating activity, in media with 10% and no dioxane, respectively. Here, reactivity of the amino compounds was decreasing in the order: Val-Phe > Val > Nalpha-Z-Lys, which reflects the mechanism of the amine-isocyanate reaction. The experiments also demonstrate the effect of a solvent (organic phase content) on the yield of the carbamoylation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号