首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biomass concentration extant in potassiumlimited cultures of either Klebsiella pneumoniae or Bacillus stearothermophilus (when growing at a fixed temperature and dilution rate in a glucose/ammonium salts medium) increased progressively as the medium pH value was raised step-wise from 7.0 to 8.5. Because the macromolecular composition of the organisms did not vary significantly, this increase in biomass could not be attributed to an accumulation of storage-type polymers but appeared to reflect a pH-dependent decrease in the cells' minimum K+ requirement. Significantly, this effect of pH was not eviden with cultures in which no ammonium salts were present and in which either glutamate or nitrate was added as the sole nitrogen source; however, it was again manifest when various concentrations of NH4Cl were added to the glutamate-containing medium. This suggested a functional replacement of K+ by NH 4 + , a proposition consistent with the close similarity of the ionic radii of the potassium ion (1.33 Å) and the ammonium ion (1.43 Å). At pH 8.0, and with a medium containing both glutamate (30 mM) and NH4Cl (100 mM), cultures of B. stearothermophilus would grow without added potassium at a maximum rate of 0.7 h-1. Under these conditions the cells contained maximally 0.1% (w/w) potassium (derived from contaminating amounts of this element in the medium constituents), a value which should be compared with one of 1.4% (w/w) for cells growing in a potassiumlimited medium containing initially 0.5 mM K+. Qualitatively similar findings were made with cultures of K. pneumoniae; and whereas one may not conclude that NH 4 + can totally replace K+ in the growth of these bacteria, it can clearly do so very extensively.  相似文献   

2.
The role played by a bacterial community composed ofPseudomonas putida, strain 21;Pseudomonas stutzeri, strain 18; andPseudomonas sp., strain 5, and by physical and chemical factors in the degradation of CN and SCN was studied. It was shown that the degradation of CN is determined both by the action of bacteria and by abiotic physical and chemical factors (pH, O2, temperature, the medium agitation rate, etc.). The contribution of chemical degradation was found to increase drastically at pH below 9.0; when air was blown through the medium (irrespective of the pH value); under active agitation of the medium; and when the medium surface interfacing air was increased. Even at elevated pH values (9.0-9.2), suboptimal for bacterial growth, the microbial degradation could account for at most 20–25 mg/1 of CN, regardless of its initial concentration. When CN and SCN were concurrently present in the medium, the former compound was the first to be degraded by microorganisms. The rate of bacterial degradation of SCN under continuous cultivation in a chain of reactors was found to depend on its concentration, the medium flow rate, agitation rate, and the pattern of carbon source supply and could exceed 1 g/(l day). CN and SCN are utilized by bacteria solely as nitrogen sources. The mechanism of CN and SCN degradation by the microbial community is discussed. Deceased.  相似文献   

3.
Incorporation of ethanol (1.0 or 1.25 M) into exponential-phase cultures of Saccharomyces cerevisiae NCYC 366 growing anaerobically in a medium supplemented with ergosterol and an unsaturated fatty acid caused a retardation in growth rate, which was greater when the medium contained oleic rather than linoleic acid. Ethanol incorporation led to an immediate drop in growth rate, and ethanol-containing cultures grew at the slower rate for at least 10 h. Incorporation of ethanol (0.5 M) into buffered (pH 4.5) cell suspensions containing d-[6-3H] glucose, d-[1-14C] glucosamine, l-[U-14C] lysine or arginine, or KH2 32PO4 lowered the rate of solute accumulation by cells. Rates of accumulation of glucose, lysine and arginine were retarded to a greater extent when cells had been grown in the presence of oleic rather than linoleic acid. This difference was not observed with accumulation of phosphate. Ethanol was extracted from exponential-phase cells by four different methods. Cells grown in the presence of linoleic acid contained a slightly, but consistently, lower concentration of ethanol than cells grown in oleic acid-containing medium. The ethanol concentration in cells was 5–7 times greater than that in the cell-free medium.  相似文献   

4.
A heavy metal resistant fungus was isolated from the sediment of Pacific Ocean, and identified to be Cladosporium cladosporioides. It grew normally in a medium containing 60 mM Mn2+ and could endure 1,200 mM as the highest concentration tested. Quantification analysis confirmed a high accumulation of Mn which was 58 mg/g in dried biomass. Under transmission electron microscope, many intracellular crystals were observed in the cytoplasm of the hypha cells grown in a Mn-rich medium, and varied from a few nanometers to 200 nm in length. Energy dispersive X-ray (EDX) analysis showed that the crystals were composed of manganese and phosphorus in atomic ratio of 1.6:1 (Mn/P). Further, factors which might influence the resistance of this fungus were investigated. As a result, its high resistance to Mn2+ was found dependent on the presence of Mg2+, and could be further enhanced by phosphate. However, the effect of phosphate was not observed without the presence of Mg2+. In addition, the resistance was also influenced by pH of the medium, which was lost above pH 8. This is the first report on a fungus which showed a hyper resistance to manganese by forming a large quantity of intracellular Mn/P crystals.  相似文献   

5.
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)–1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l–1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l–1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h–1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h–1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.  相似文献   

6.
Yokota E  Ohmori T  Muto S  Shimmen T 《Planta》2004,218(6):1008-1018
Calcium ions play a key role in the elongation and orientation of pollen tubes. We found that significant amounts of 21-kDa polypeptide were specifically released into the extracellular medium when pollen grains of lily, Lilium longiflorum Thunb., were incubated in the presence of EGTA or at low concentrations of Ca2+. This phenomenon was also dependent on pH and on the concentrations of MgCl2 in the medium; the release of 21-kDa polypeptide from pollen was suppressed by increasing the MgCl2 concentration and by lowering pH. Germination of pollen grains was inhibited in the medium into which the 21-kDa polypeptide had been released. This inhibition was irreversible; germination did not occur on transfer of the pollen grains into basal culture medium. Immuno-electron microscopy using an antibody against 21-kDa polypeptide showed that this polypeptide was present in the cytoplasm, vegetative nucleus and generative cell. When the pollen was treated with a medium containing EGTA, the density of 21-kDa polypeptide in the cytoplasm significantly decreased, but its density in vegetative nuclei and the generative cell did not, suggesting that only cytoplasmic 21-kDa polypeptide was released into the extracellular medium. The 21-kDa polypeptide was also present in the pollen of other higher-plant species, such as Tradescantia virginiana L., Nicotiana tabacum L. (angiosperms), and Cryptomeria japonica D. Don. (gymnosperm), and was also released into the medium in the presence of EGTA. In the case of C. japonica, however, it was released from pollen at alkaline pH above 8.5. The expression of 21-kDa polypeptide was not pollen-specific, because 21-kDa components immunoreactive with the anti-21-kDa polypeptide serum also existed in vegetative organs and cells of lily or tobacco. However, the 21-kDa polypeptide was not released into the extracellular medium from cultured tobacco BY-2 cells, even in the presence of EGTA. Amino acid sequences of two peptide fragments derived from 21-kDa polypeptide matched well those of low-molecular-weight cyclophilin (CyP). The antiserum against 21-kDa polypeptide recognized the CyP A from calf thymus and that in A431 carcinoma cells. The 21-kDa polypeptide fraction purified from lily pollen possessed peptidyl-prolyl cis-trans isomerase activity, which was suppressed by cyclosporin A (CsA), an inhibitor of enzyme activities of CyPs. From these results, we concluded that the 21-kDa polypeptide is a low-molecular-weight CyP. The present study showed that CyP in the pollen of higher plants is released into the extracellular matrix under unfavorable conditions.Abbreviations CaM Calmodulin - CBB Coomassie-brilliant-blue - CsA Cyclosporin A - CyP Cyclophilin  相似文献   

7.
The internal pool of ammonia in strains of unicellular and filamentous cyanobacteria was found to be 6–12 nmol·mg-1 protein. In nitrate grown Anacystis nidulans R-2 the pool size averaged 12 nmol·mg-1 protein, which corresponds to 2.3 mM, and was little affected by N-source or medium pH during growth. Cells from NH 4 + -limited continuous culture contained comparable pools, and cell yield was independent of medium pH (7.2–8.5). The internal pool was not bound to macromolecules. The pool fell transiently to about one-third within 2 h on shifting cells to N-free medium, but was slowly regenerated over 24 h.Added ammonia was removed from solution by illuminated cell suspensions at a linear rate, adequate to supply biosynthetic needs, to residual concentrations less than 5 M. An apparent K m of less than 1 M can be inferred. Uptake rates were independent of N-source during growth, and of assay pH over the range 6.2–8.7. Bicarbonate was needed for uptake, but the rate of uptake was not influenced by the simultaneous presence of NaNO3 (10 mM) or CH3NH3Cl (0.15 mM). Uptake was energydependent, and was eliminated in dark, anaerobic conditions or by the addition of protonophores. Uptake was also strongly inhibited by dicyclohexylearbodiimide, an ATPase inhibitor, by — SH reagents and methionine sulfoximine, suggesting that interference with energy supply or with ammonia metabolism prevented further entry into the cells.Non-standard abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCCD dicyclohexylcarbodiimide - DCMU dichlorophenyl dimethylurea - NEM N-ethylmaleimide - pCMB p-chloromercuribenzoate - MSX L-methionine Dl-sulfoximine  相似文献   

8.
菜心组织培养技术初探   总被引:1,自引:1,他引:0  
为建立菜心(Brassica campestris ssp.chinensis var.utilis)的快繁技术体系,以花药和子叶-子叶柄为外植体进行组织培养研究。结果表明,花药培养以选取未开放的花蕾为宜,且花柱略高于花瓣,此时小孢子多数处于单核靠边期。菜心花粉的萌发率不高,且秋冬季的花粉比夏季的萌发率高。菜心花药愈伤组织诱导培养基为:MS+1.0 mg L–1 KT+1.0 mg L–1 2,4-D+3%糖+6 g L–1琼脂+8%椰乳,不定芽诱导培养基为:MS+2.0 mg L–1 6-BA+0.5 mg L–1 NAA+1.0 g L–1活性炭+2%糖+6 g L–1琼脂或MS+2.0 mg L–1 ZT+0.5 mg L–1 IAA+0.5 g L–1 AgNO3+1.0 g L–1活性炭+2%糖+6 g L–1琼脂。花药培养的不定芽诱导率为36.7%,不定芽培养出现褐化现象,不能形成再生植株;而以子叶-子叶柄为外植体培养获得的植株再生率可达80%。  相似文献   

9.
The uptake of isolated nuclei from Vicia hajastana Grossh. cells into protoplasts of an auxotrophic cell line of Datura innoxia P. Mill. was induced under the influence of polyethylene glycol and Ca2+ at pH 6.8. The frequency of nuclear uptake varied from 0.8 to 2.3% and that of the recovery of prototrophic clones from 10-5 to 6·10-4. The prototrophic nuclear fusion products following nuclear uptake could be rescued by initial culture of the protoplasts in non-selective conditions and by the subsequent use of feeder cell layers to support the growth of surviving colonies on a selective medium. The presence of Vicia genomic DNA in some prototrophic clones was confirmed by dot-blot hybridization using Datura and Vicia DNA probes. In certain transformed clones, the recovery of prototrophy was accompanied by the restoration of morphogenetic potential. Welldeveloped shoots typical of wild-type Datura could be regenerated employing an appropriate regeneration medium.Abbreviations MS Murashige and Skoog (1962) - PEG polyethylene glycol  相似文献   

10.
11.
The photosynthetic activities of three planktonic desmid species (Staurastrum brachiatum, Staurodesmus cuspidatus var. curvatus, and Staurastrum chaetoceras) were compared after adaptation to medium enriched with either a 20 mM Na+-phosphate (P) or HEPES buffer. Incubations up to 2 d were carried out at pH 6 or 8 under normal air or air enriched with 5 % CO2. Gross maximum photosynthetic rate (P max) and growth rate were decreased in both S. brachiatum and Std. cuspidatus at higher pH when using the HEPES buffer and this effect was independent of CO2 concentration, indicating that pH had an inhibitory effect on photosynthesis and growth in these species. The P-buffer at pH 8 caused a large decrease in P max and quantum yield for charge separation in photosystem 2 (PS2), compared to HEPES-buffered algae. This effect was very large in both S. brachiatum and Std. cuspidatus, two species characteristic of soft water lakes, but also significant in S. chaetoceras, a species dominant in eutrophic, hard water lakes. The decreased P max in P-buffer could not be related to a significant increase in cellular P content known to be responsible for inhibition in isolated chloroplasts. Experiments at pH 6 and 8 showed that two conditions, high pH and high Na+ concentration, both contributed to the decreased P max and quantum yield in the desmids. Effects of a P-buffer were less pronounced by using K+-P buffer. The use of P-buffer at pH 8 possibly resulted in high irradiance stress in all species, indicated by damage in the PS2 core complex. In the soft water species pH 8 resulted in increased non-photochemical quenching together with a high de-epoxidation state of the xanthophyll cycle pigments.  相似文献   

12.
Ochrobactrum sp. B2, a methyl parathion-degrading bacterium, was proved to be capable of using p-nitrophenol (PNP) as carbon and energy source. The effect of factors, such as temperature, pH value, and nutrition, on the growth of Ochrobactrum sp. B2 and its ability to degrade p-nitrophenol (PNP) at a higher concentration (100 mg l−1) was investigated in this study.The greatest growth of B2 was observed at a temperature of 30 °C and alkaline pH (pH 9–10). pH condition was proved to be a crucial factor affecting PNP degradation. Enhanced growth of B2 or PNP degradation was consistent with the increase of pH in the minimal medium, and acidic pH (6.0) did not support PNP degradation. Addition of glucose (0.05%, 0.1%) decreased the rate of PNP degradation even if increased cell growth occurred. Addition of supplemental inorganic nitrogen (ammonium chloride or ammonium sulphate) inhibited PNP degradation, whereas organic nitrogen (peptone, yeast extract, urea) accelerated degradation.  相似文献   

13.
The growth characteristics ofCandida blankii as a function of temperature and pH in a simulated bagasse hemicellulose hydrolysate were determined in chemostat culture. The highest maximum specific growth rate of 0.44h–1 was reached at 38°C and at pH 5.5, with a sharp decrease in growth rate on either side of this temperature. Growth occurred at 46°C but not at 48°C. The protein and cell yields varied little below 40°C and the respective values were 0.22 and 0.5 g/g at 38°C. At the lower pH values, a severe linear decrease in cell and protein yields occurred, whereas a small increase in these yields at decreasing pH values was found when acetic acid was omitted from the medium. In the presence of acetic acid, a very sharp decrease in the growth rate at pH values below pH 4.5 was noted, despite the very low residual acetic acid concentrations, of less than 50 mg/l, in the culture.  相似文献   

14.
Schwanniomyces castellii excreted -amylase and amyloglucosidase into the medium in the presence of starch. The biosynthesis and the rate of excretion were influenced by dissolved oxygen (specially for -amylase), pH of the culture and dilution rate. The cell yield observed (0.59) remained constant up to D=0.35h-1 with starch as substrate. But in the case of growth on glucose, the yield observed was equal to 0.62 up to a dilution rate of D=0.18 h-1. Beyond this value Y x/s decreased and ethanol was produced. The onset of fermentation dependend partly on the nature of the substrate and not only on the environment in particular on the quantity of dissolved oxygen present.  相似文献   

15.
The maximum growth rate of Trichosporon cutaneum CBS 8111 in chemostat cultures was 0.185 h-1 on ethylamine and 0.21 h-1 on butylamine, that of Candida famata CBS 8109 was 0.32 h-1 on putrescine.The amine oxidation pattern of the ascomycetous strains studied, viz. Candida famata CBS 8109, Stephanoascus ciferrii CBS 4856 and Trichosporon adeninovorans CBS 8244 was independent of the amine that had been used as the growth substrate. It resembled that of benzylamine/putrescine oxidase found in other ascomycetous yeasts. However, differences in pH optimum and substrate specificity were observed between the amine-oxidizing systems of these three species.The amine oxidation pattern of cell-free extracts of Trichosporon cutaneum CBS 8111 varied with the amine that was used as growth substrate. The enzyme system produced by Cryptococcus laurentii CBS 7140 failed to oxidize isobutylamine and benzylamine, and showed a high pH optimum.The synthesis of amine oxidase in the four yeast strains studied was not repressed by ammonium chloride and was weakly repressed by glucose but was strongly repressed if both compounds were present in the growth medium.  相似文献   

16.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   

17.
Among 97 fungal strains isolated from soil collected in the arctic tundra (Spitsbergen), Penicillium chrysogenum 9 was found to be the best lipase producer. The maximum lipase activity was 68 units mL–1 culture medium on the fifth day of incubation at pH 6.0 and 20°C. Therefore, P. chrysogenum 9 was classified as a psychrotrophic microorganism. The non-specific extracellular lipase showed a maximum activity at 30°C and pH 5.0 for natural oils or at pH 7.0 for synthetic substrates. Tributyrin was found to be the best substrate for lipase, among those tested. The Km and Vmax were calculated to be 2.33 mM and 22.1 units mL–1, respectively, with tributyrin as substrate. The enzyme was inhibited more by EDTA than by phenylmethylsulfonyl fluoride and was reactivated by Ca2+. The P. chrysogenum 9 lipase was very stable in the presence of hexane and 1,4-dioxane at a concentration of 50%, whereas it was unstable in presence of xylene.  相似文献   

18.
Glycine betaine stimulates the growth rate of various bacteria in high osmolarity medium. In our studies, glycine betaine stimulated the growth rate of Escherichia coli K 12 in minimal medium with normal osmolarity at alkaline pH (pH 8.2). Betaine also caused a reduction in the intracellular pools of K+ and low molecular weight thiols in E. coli growing both in medium with high osmolarity and at alkaline pH. These effects of betaine were absent at pH 7.0. In cells growing in high osmolarity medium, 10 mM sodium acetate or 10 M N-ethylmaleimide reduced expression of the osmosensitive gene proU to the same extent as treatment with betaine; however, under these conditions, sodium acetate and N-ethylmaleimide did not stimulate the growth of E. coli. It is proposed that low molecular weight thiols and intracellular pH may participate in the response of E. coli to betaine.  相似文献   

19.
The regulatory properties of NADH-dependent nitrate reductase (NR) in desalted root extracts from hydroponically grown cucumber (Cucumis sativus L.) seedlings were examined. The lowest activity of NR was detected in extracts incubated with Mg2+ and ATP. An inhibitory effect of Mg-ATP was cancelled in the presence of staurosporine (the protein kinase inhibitor) and completely reversed after addition of ethylenediaminetetraacetate (EDTA) as well as AMP into reaction mixture. Reactivation of enzyme due to AMP presence, contrary to the chelator-dependent NR activation, was sensitive to microcystin LR (the protein phosphatase inhibitor). Above results indicated that the nitrate reductase in cucumber roots was regulated through reversible phosphorylation of enzyme protein. A drop in the activity of NR was also observed after incubation of enzyme at low pH. At low pH, the presence of ATP alone in the incubation medium was sufficient to inactivate NR, indicating that H+ can substitute the Mg2+ in formation of an inactive complex of enzyme. ATP-dependent inactivation of NR at low pH was prevented by staurosporine and reversed by AMP. However, AMP action was not altered by microcystin LR suggesting that in low pH the nucleotide induced reactivation of NR is not limited to the protein phosphorylation.  相似文献   

20.
Anders Hargeby 《Oecologia》1990,82(3):348-354
Summary The mortality and physiological status (body water content) of Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) were measured after 25 days exposure in 20 natural streams with a pH range of 4.3–7.5 and a colour range of 8–280 mg Pt L–1. In addition, the effects of keeping the animals as single species or together were studied. The response of Gammarus to low pH was an increased mortality and lower physiological status of surviving individuals in streams with a pH lower than 6.0. In Asellus the physiological status was correlated with pH, while the mortality was not pH dependent. The effects of humus on the physiological status of Asellus was significant when fitted to a second order polynomial function. The influence of humus can, however, be regarded as small relative to pH. The interactions between the species could be described as asymmetric under optimal conditions of high pH and low humus concentrations, where the presence of Gammarus decreased the survival and physiological status of Asellus. Acid stress did not seem to reverse the direction of this asymmetry, but the presence of Gammarus improved the physiological status of Asellus at pH lower than 6.0. Since the presence of Asellus did not increase the mortality or decrease the physiological status of Gammarus, this could be explained by Asellus feeding on Gammarus that died from physiological stress solely. This mechanism suggests that food quality, and thus effects of diffuse competition, can be important for the ability to withstand acid stress. The results, though, give no support for the hypothesis that competition from Asellus is important for the disappearance of Gammarus during the acidification of streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号