首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The chromosome complement of hybrid males from the cross between Drosophila miranda female and D. persimilis male provides an interesting chromosomal situation where an autosome, the 3rd chromosome of D. persimilis, coexists with a homologue that developed into a sex chromosome, the X2 in D. miranda. Except for certain inversions and a few minor translocations, these two chromosomes (X2 and the 3rd) still look alike as polytene elements. However, in hybrid males pairing of the two chromosomes, the X2 and 3rd, is rare, while in female hybrids it occurs frequently. — 3H-TdR labeling shows that while the X2 and 3rd chromosomes replicate synchronously in hybrid female, in the hybrid male the former completes its replication earlier than the 3rd chromosome, as do the two arms of the X1 (XL and XR). The frequency and relative intensity of 3H-TdR labeling of each site of the X2 and that of the 3rd chromosome in hybrid males closely agree with those of the corresponding sites in the X2 of the miranda male and the 3rd chromosome of the persimilis male (or female), respectively. The results suggest that timing and rate of replication of the X2 are determined autonomously and follow the pattern in the respective parental species.  相似文献   

2.
C. Segarra  G. Ribo    M. Aguade 《Genetics》1996,144(1):139-146
Twenty-two markers located on Muller's elements D or E have been mapped by in situ hybridization in six species of the obscura group of Drosophila and in D. melanogaster. The obscura species can be grouped into a Palearctic cluster (D. subobscura, D. madeirensis and D. guanche) and a Nearctic one (D. pseudoobscura, D. persimilis and D. miranda). Eleven of the probes contain known genes: E74, Acp70A, Est5, hsp28/23, hsp83, emc, hsp70, Xdh, Acph-1, Cec and rp49. The remaining probes are recombinant phages isolated from a D. subobscura genomic library. All these markers hybridize to the putative homologous chromosome or chromosomal arm of elements D and E. Thus, these elements have conserved their genic content during species divergence. Chromosomal homologies proposed previously for each element among the species of the same cluster have been compared with the present results. The distribution of markers within each element has changed considerably as inferred from pairwise comparisons of obscura species included in the two different clusters. Only chromosomal segments defined by closely linked markers have been conserved: one such segment has been detected in element D and three in element E between D. subobscura and D. pseudoobscura.  相似文献   

3.
The major larval cuticle protein (LCP) genes I–IV ofDrosophila melanogaster are clustered on the right arm of the second chromosome. By cross-hybridization we cloned the corresponding genes from three different members of theobscura group:D. persimilis, D. pseudoobscura andD. miranda. InD. pseudoobscura andD. persimilis the gene cluster maps to autosome3. In contrast, inD. miranda it was found on theX2 andY sex chromosome. Hence, this exceptional karyotypic situation offers a unique opportunity to analyse the molecular processes underlying the phenomenon of chromosome degeneration. Comparison of LCP genes I–IV in theX2 andY chromosomal region inD. miranda revealed extensive DNA rearrangements at the latter. TheY chromosomal LCP cluster is characterized by DNA insertions which are absent in the correspondingX2 chromosomal DNA, suggesting that these DNA sequences must have invaded this area. In addition, part of the analysedY chromosomal region is duplicated.  相似文献   

4.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

5.
Gary Cobbs  Satya Prakash 《Genetics》1977,85(4):697-711
Electrophoretic phenotypes of the esterase-5 locus were examined in the sibling species D. pseudoobscura, D. persimilis and D. miranda. D. persimilis alleles were found to have uniformly higher charge on monomers than corresponding alleles of either D. pseudoobscura or D. miranda. Consequently, D. persimilis shares no alleles in common with either D. pseudoobscura or D. miranda, while the latter two species share a number of alleles. It was discovered that by increasing the concentration of acrylamide gel and increasing the length of migration, more allelic differences could be distinguished. Also more alleles were discovered by examining monomer mobility in addition to dimer mobility. In D. persimilis and D. miranda it was found that the previously known high frequency allelic classes broke down into several allelic classes. A test of goodness-of-fit to the infinite alleles model was done and a rough agreement with the model was found.  相似文献   

6.
The locations of 77 markers along the chromosomal elements B (41 markers) and C (36 markers) of Drosophila subobscura, D. pseudoobscura, and D. melanogaster were obtained by in situ hybridization on polytene chromosomes. In comparisons between D. subobscura and D. pseudoobscura, 10 conserved segments (accounting for 32% of the chromosomal length) were detected on element B and eight (17% of the chromosomal length) on element C. The fixation rate of paracentric inversions inferred by a maximum likelihood approach differs significantly between elements. Muller's element C (0.17 breakpoints/Mb/million years) is evolving two times faster than element B (0.08 breakpoints/Mb/million years). This difference in the evolutionary rate is paralleled by differences in the extent of chromosomal polymorphism in the corresponding lineages. Element C is highly polymorphic in D. subobscura, D. pseudoobscura, and in other obscura group species such as D. obscura and D. athabasca. In contrast, the level of polymorphism in element B is much lower in these species. The fixation rates of paracentric inversions estimated in the present study between species of the Sophophora subgenus are the highest estimates so far reported in the genus for the autosomes. At the subgenus level, there is also a parallelism between the high fixation rate and the classical observation that the species of the Sophophora subgenus tend to be more polymorphic than the species of the Drosophila subgenus. Therefore, the detected relationship between level of polymorphism and evolutionary rate might be a general characteristic of chromosomal evolution in the genus Drosophila.  相似文献   

7.
The chromosomal location of the histone genes was determined in seven species of the Drosophila obscura group by in situ hybridization. Histone genes occur on more than one site per genome and on non-homologous chromosome elements. In addition, the metaphase karyotypes and the banding pattern of the polytene chromosomes were compared. Based on chromosomal characters, the cladogenesis of the D. obscura group was established. From the distribution of histone sites in different species, analysed in this paper and in previous studies, the phylogenetic history of histone gene transposition was derived. The molecular mechanisms responsible for the generation of new histone sites are discussed.  相似文献   

8.
A potentially full-sized P element isolated from the genome of Drosophila ambigua by polymerase chain reaction amplification was completely sequenced. It has a length of 3329 bp and the termini are formed by 33 bp inverted repeats. Sequence comparisons show that it can be classified as a member of the T-type P element subfamily. The translational reading frames of all four exons are interrupted by stop codons and frameshift mutations. At the 3′ end of exon 3 a 687 bp insertion sequence (IS-amb-P) is found that also occurs in the form of dispersed copies (IS-amb) in the genome in D. ambigua. At the interspecific level it shows homology to mobile sequences of other species of the obscura group. Although variable in length, these IS elements are characterized by conserved sections without coding function and by 14 bp inverted repeats, one at a terminal, the other at a subterminal position. In situ hybridization revealed that P elements in D. ambigua are restricted to only two euchromatic sites on chromosome elements A and E. This situation resembles that found in Drosophila guanche and Drosophila subobscura where P homologs are clustered at a single site on chromosome element E and where the section corresponding to exon 3 of P elements carries an IS element. The gene sik-hom, which is located at the 5′ side of the D. guanche cluster of P homologs, was used as a marker to examine whether the P element sites on chromosome element E of D. guanche and D. ambigua are homologous. The results suggest that the nested insertions of IS elements into P elements must have occurred independently in the two different lineages. Received: 13 October 1997; in revised form: 11 December 1997 / Accepted: 12 December 1997  相似文献   

9.
Restriction analysis of the genomic region containing the Adh gene and in situ hybridization assays were performed in six Drosophila species belonging to three different subgenera: D. ambigua, D. subobscura, D. madeirensis and D. guanche (sg. Sophophora); D. immigrans (sg. Drosophila); and D. lebanonensis (sg. Pholadoris). In agreement with previous observations, comparison of restriction maps of the Adh region shows that D. subobscura and D. madeirensis are very closely related. Partial homology is also observed with the rest of the obscura group species. Nevertheless, no resemblance at the restriction map level is detected when more distantly related species are compared. In D. ambigua, D. immigrans and D. lebanonensis in situ hybridization assays reveal a single chromosomal location for Adh, which in D. lebanonensis appears to be sex linked. In contrast, in D. subobscura, D. madeirensis and D. guanche multiple sites of hybridization with homologous and heterologous probes are observed. For example, in D. subobscura and D. madeirensis the functional Adh gene is located on the U chromosome and additional homologous retrosequences are found on the E chromosome.by H. Jäckle  相似文献   

10.
The clone Dmir1098, isolated from a genomic lambda library of Drosophila miranda labels exclusively the tips of the giant chromosomes in the highly polytenized nuclei of the female larval salivary glands. However, the in situ hybridizations to male metaphase plates, using the same probe, reveal a massive labeling block within the neo-Y-chromosome in addition to the labeling blocks at both chromosome ends. From the comparison with the Y chromosome labeling pattern of D. pseudoobscura, a sibling species to D. miranda, an end-to-end fusion mechanism involving the telomere repeats would be the most straightforward explanation for the karyotype change in D. miranda.  相似文献   

11.
Hybrids between D. pseudoobscura bogotana and D. pseudoobscura pseudoobscura are fertile except for males produced in one of the two reciprocal crosses. As there is no premating isolation between these subspecies, nonreciprocal male sterility represents the first step in speciation. Genetic analysis reveals two causes of hybrid F1 sterility: a maternal effect and incompatibilities between chromosomes within males. The maternal effect appears to play the greatest role in hybrid sterility. The X chromosome has the largest effect on fertility of any chromosome, a ubiquitous result in analyses of hybrid sterility and inviability in Drosophila. This effect is entirely attributable to a region comprising less than 30% of the X chromosome. These results are compared to those from a similar study of D. pseudoobscura-D. persimilis hybrids, an older and more reproductively isolated species pair in the same lineage. Such comparisons may allow one to identify the genetic changes characterizing the early versus late stages of speciation.  相似文献   

12.
Cloned DNA fragments of Drosophila miranda which label all chromosome ends show a basic tandem repeat unit of 4.4 kb. The D. miranda telomere specific tandem repeats do not cross-hybridize with genomic D. melanogaster DNA which itself contains telomere repeat units of 3 kb. For a more detailed analysis of the functional criteria of telomere specific sequences we determined the repetition frequency of the tandem repeat units. As a low estimate we found a repetition frequency of 20 for female D. miranda DNA. This is on average equivalent to 2 telomere repeat units per chromosome end in the female D. miranda karyotype. However, a variable number of tandem repeat units per chromosome end would describe more closely the obtained differences in the labeling intensity between the individual chromosomes (X1L-5). For the D. miranda male DNA we determined a repetition frequency of 90. The frequency difference of 70 copies between male and female DNA must be due to the Y-chromosome.  相似文献   

13.
Chromosomal homology between two species of the subgenus Sophophora, D. miranda and D. melanogaster, belonging to the obscura and the melanogaster group respectively, was probed by DNA in situ cross hybridizations. A set of recombinant plasmids with inserts derived from the D. melanogaster genome were cross hybridized to the D. miranda karyotype. Vice versa, recombinant Lambda phages isolated from a genomic D. miranda library were localized in D. miranda and probed for localization in D. melanogaster. In the main, the results support the homology relations proposed on the basis of cytogenetic data. However, the location of both tandemly repetitive genes tested, 5S RNA genes and the histone genes, is not in accordance with expectation. The 5S RNA genes, when probed with the D. melanogaster plasmid 12D8 (Artavanis-Tsakonas et al., 1977), were found to occur at two sites in both, D. miranda and D. pseudoobscura.  相似文献   

14.
The X1R chromosome of Drosophila miranda and the 3L autosome of Drosophila melanogaster are thought to have originated from the ancestral D chromosomal element and therefore may contain the same set of genes. It is expected that these genes will be dosage compensated in D. miranda because of their X linkage. To test these possibilities and to study evolution of the dosage compensation mechanism, we used the 3L-linked autosomal head-specific gene 507ml of D. melanogaster to isolate the homologous gene (507 mr) from a D. miranda genomic library. In situ hybridization showed that gene 507 is located at the 12A region of the X1R chromosome of D. miranda, indicating that the chromosomal homology deduced by cytogenetic means is correct. Restriction analysis and cross-specific DNA and RNA blot hybridization revealed the presence of extensive restriction pattern polymorphism and lack of sequence similarity in some areas of the 507 mr and 507 ml DNA, including the 3 portion of the transcribed region. However, the 5 portion of the transcribed region and the DNA sequences, located approximately 0.8 kb upstream and 3 kb downstream from the 507 ml gene showed a high degreee of similarity with the DNA sequences of comparable regions of the 507 mr gene. In both species gene 507 codes for a highly abundant 1.8 kb RNA which is expressed in the retina of the compound eye. Although in D. miranda the males have one and the females have two copies of the 507 gene, the steady-state levels of the 507 mRNA in both sexes were found to be similar, indicating that gene 507 is dosage compensated in D. miranda. Thus, along with the disparate rates of evolution in different areas of the DNA associated with gene 507, in D. miranda this gene has come under the regulation of the X chromosomal dosage compensation mechanism.by M.L. Pardue  相似文献   

15.
Summary Drosophila subobscura has recently colonized the American continent and is an excellent model for studying evolution in action. Previous analyses have shown that these colonizing populations have significant latitudinal clines for the frequencies of some chromosomal arrangements that parallel those clines found in the Old World. These results strongly suggest that this polymorphism is adaptive. In the present study, significant latitudinal clines for continuous morphometric variables (flies are larger in the north) have been detected in Old World populations ofD. subobscura. The adaptive nature of these clines is reinforced by the fact that parallel latitudinal clines for body size have also been detected inDrosophila obscura, a closely related sympatric species, as well as previously in otherDrosophila. On the other hand, no significant latitudinal clines for continuous morphometric traits, not even when using an overall size index, have been detected in colonizing populations ofD. subobscura. This is a rather surprising result given the number of generations that have elapsed since the species was detected in America and given that significant clines in chromosomal inversions are already established. Thus, the adaptive response of quantitative morphometric variables is not as rapid as that found for chromosomal inversions. Nevertheless, canonical correlation analysis suggests that significant latitudinal clines for body size might soon be detected in the American continent. The results obtained here are included in a projected time series with the aim of documenting size evolution in action.  相似文献   

16.
Summary Mitochondrial DNA (mtDNA) restriction site maps for nine species of theDrosophila obscura subgroup and forDrosophila melanogaster were established. Taking into account all restriction enzymes (12) and strains (45) analyzed, a total of 105 different sites were detected, which corresponds to a sample of 3.49% of the mtDNA genome. Based on nucleotide divergences, two phylogenetic trees were constructed assuming either constant or variable rates of evolution. Both methods led to the same relationships. Five differentiated clusters were found for theobscura subgroup species, one Nearctic, represented byDrosophila pseudoobscura, and four Palearctic, two grouping the related triads of speciesDrosophila subobscura, Drosophila madeirensis, Drosophila guanche, andDrosophila ambigua, Drosophila obscura, Drosophila subsilvestris, and two more represented by one species each,Drosophila bifasciata, andDrosophila tristis. The different Palearctic clusters are as distant between themselves as with the Nearctic one. For the related speciesD. subobscura, D. madeirensis, andD. guanche, the pairD. subobscura-D. madeirensis is the closest one. The relationships found by nucleotide divergence were confirmed by differences in mitochondrial genome size, with related species sharing similar genome lengths and differing from the distant ones. The total mtDNA size range for theobscura subgroup species was from 15.5 kb forD. pseudoobscura to 17.1 forD. tristis.  相似文献   

17.
We isolated 96 dinucleotide repeats with five or more tandemly repeated units from a subgenomic Drosophila subobscura library. The mean repeat unit length of microsatellite clones in D. subobscura is 15, higher than that observed in other Drosophila species. Population variation was assayed in 32-40 chromosomes from Barcelona, Spain, using 18 randomly chosen microsatellite loci. Positive correlation between measures of variation and perfect repeat length measures (mean size, most common, and longest allele) is consistent with a higher mutation rate in loci with longer repeat units. Levels of microsatellite variation measured as variance in repeat number and heterozygosity in D. subobscura were similar to those of Drosophila pseudoobscura and higher than those of Drosophila melanogaster and Drosophila simulans. Our data suggest that higher levels of microsatellite variation, and possibly density, in D. subobscura compared with D. melanogaster are due to both a higher average effective population and a higher intrinsic slippage rate in the former species.  相似文献   

18.
Enzyme loci, visible marker genes and -cloned DNA-sequences from a D. miranda library were mapped cytologically on the chromosome elements C and E of D. pseudoobscura and D. subobscura. New data are incorporated into the linkage maps of the two species. Homologous segments can now be localized in the polytene chromosomes with these markers. A comparison of the chromosome elements E of D. melanogaster and D. subobscura shows 12 conserved subsections which have been rearranged by paracentric inversions in the evolution of the two lineages.  相似文献   

19.
In nature, closely related species may hybridize while still retaining their distinctive identities. Chromosomal regions that experience reduced recombination in hybrids, such as within inversions, have been hypothesized to contribute to the maintenance of species integrity. Here, we examine genomic sequences from closely related fruit fly taxa of the Drosophila pseudoobscura subgroup to reconstruct their evolutionary histories and past patterns of genic exchange. Partial genomic assemblies were generated from two subspecies of Drosophila pseudoobscura (D. ps.) and an outgroup species, D. miranda. These new assemblies were compared to available assemblies of D. ps. pseudoobscura and D. persimilis, two species with overlapping ranges in western North America. Within inverted regions, nucleotide divergence among each pair of the three species is comparable, whereas divergence between D. ps. pseudoobscura and D. persimilis in non-inverted regions is much lower and closer to levels of intraspecific variation. Using molecular markers flanking each of the major chromosomal inversions, we identify strong crossover suppression in F1 hybrids extending over 2 megabase pairs (Mbp) beyond the inversion breakpoints. These regions of crossover suppression also exhibit the high nucleotide divergence associated with inverted regions. Finally, by comparison to a geographically isolated subspecies, D. ps. bogotana, our results suggest that autosomal gene exchange between the North American species, D. ps. pseudoobscura and D. persimilis, occurred since the split of the subspecies, likely within the last 200,000 years. We conclude that chromosomal rearrangements have been vital to the ongoing persistence of these species despite recent hybridization. Our study serves as a proof-of-principle on how whole genome sequencing can be applied to formulate and test hypotheses about species formation in lesser-known non-model systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号