首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sun M  Yang Y  Yang P  Lei B  Du L  Kijlstra A 《PloS one》2011,6(5):e19870

Background

Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown.

Methodology/Principal Findings

B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161–180 in Complete Freund''s adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP161-180 on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP161-180 to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP161-180. Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4+CD62L T cells, IL-17 production by CD4+CD62L+/- T cells and proliferation of CD4+CD62L+/- T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4+CD62L+/- T cells, but did not influence IFN-γ expression and T cell proliferation.

Conclusions/Significance

IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells.  相似文献   

2.
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.  相似文献   

3.
4.

Background

The saliva of sand flies strongly enhances the infectivity of Leishmania in mice. Additionally, pre-exposure to saliva can protect mice from disease progression probably through the induction of a cellular immune response.

Methodology/Principal Findings

We analysed the cellular immune response against the saliva of Phlebotomus papatasi in humans and defined the phenotypic characteristics and cytokine production pattern of specific lymphocytes by flow cytometry. Additionally, proliferation and IFN-γ production of activated cells were analysed in magnetically separated CD4+ and CD8+ T cells. A proliferative response of peripheral blood mononuclear cells against the saliva of Phlebotomus papatasi was demonstrated in nearly 30% of naturally exposed individuals. Salivary extracts did not induce any secretion of IFN-γ but triggered the production of IL-10 primarily by CD8+ lymphocytes. In magnetically separated lymphocytes, the saliva induced the proliferation of both CD4+ and CD8+ T cells which was further enhanced after IL-10 blockage. Interestingly, when activated CD4+ lymphocytes were separated from CD8+ cells, they produced high amounts of IFN-γ.

Conclusion

Herein, we demonstrated that the overall effect of Phlebotomus papatasi saliva was dominated by the activation of IL-10-producing CD8+ cells suggesting a possible detrimental effect of pre-exposure to saliva on human leishmaniasis outcome. However, the activation of Th1 lymphocytes by the saliva provides the rationale to better define the nature of the salivary antigens that could be used for vaccine development.  相似文献   

5.

Background

Chronic Chagas disease presents several different clinical manifestations ranging from asymptomatic to severe cardiac and/or digestive clinical forms. Several studies have demonstrated that immunoregulatory mechanisms are important processes for the control of the intense immune activity observed in the chronic phase. T cells play a critical role in parasite specific and non-specific immune response elicited by the host against Trypanosoma cruzi. Specifically, memory T cells, which are basically classified as central and effector memory cells, might have a distinct migratory activity, role and function during the human Chagas disease.

Methodology/Principal Findings

Based on the hypothesis that the disease severity in humans is correlated to the quality of immune responses against T. cruzi, we evaluated the memory profile of peripheral CD4+ and CD8+ T lymphocytes as well as its cytokine secretion before and after in vitro antigenic stimulation. We evaluated cellular response from non-infected individuals (NI), patients with indeterminate (IND) or cardiac (CARD) clinical forms of Chagas disease. The expression of CD45RA, CD45RO and CCR7 surface molecules was determined on CD4+ and CD8+ T lymphocytes; the pattern of intracellular cytokines (IFN-γ, IL-10) synthesized by naive and memory cells was determined by flow cytometry. Our results revealed that IND and CARD patients have relatively lower percentages of naive (CD45RAhigh) CD4+ and CD8+ T cells. However, statistical analysis of ex-vivo profiles of CD4+ T cells showed that IND have lower percentage of CD45RAhigh in relation to non-infected individuals, but not in relation to CARD. Elevated percentages of memory (CD45ROhigh) CD4+ T cells were also demonstrated in infected individuals, although statistically significant differences were only observed between IND and NI groups. Furthermore, when we analyzed the profile of secreted cytokines, we observed that CARD patients presented a significantly higher percentage of CD8+CD45RAhigh IFN-γ-producing cells in control cultures and after antigen pulsing with soluble epimastigote antigens.

Conclusions

Based on a correlation between the frequency of IFN-γ producing CD8+ T cells in the T cell memory compartment and the chronic chagasic myocarditis, we propose that memory T cells can be involved in the induction of the development of the severe clinical forms of the Chagas disease by mechanisms modulated by IFN-γ. Furthermore, we showed that individuals from IND group presented more TCM CD4+ T cells, which may induce a regulatory mechanism to protect the host against the exacerbated inflammatory response elicited by the infection.  相似文献   

6.
Although CD8+ T cells play an important role in the containment of adult HIV-1 replication, their role in infant HIV-1 infection is not as well understood. Impaired HIV-specific CD8+ T cell responses may underlie the persistently high viral loads observed in infants. We examined the frequency and phenotype of infant HIV-specific CD8+ T cells in 7 HIV-infected antiretroviral therapy-naïve infants during the first 2 years of life, using class I HLA tetramers and IFN-γ-ELISPOT. The frequency (0.088–3.9% of CD3+CD8+ cells) and phenotype (CD27+CD28, CD45RA+/−, CD57+/−, HLA-DR+, CD95+) of infant HIV-specific CD8+ T cells were similar to reports in adults undergoing early infection. Unlike adults, at 23–24 months post-infection a high frequency of HIV-specific CD8+ T cells expressed HLA-DR (mean 80%, range 68–85%) and CD95 (mean 88%, range 79–96%), suggesting sustained activation and vulnerability to apoptosis. Despite comparable expansion of HIV-specific CD8+ T cells of a similar phenotype to adults during early infection, infant T cells failed to contain HIV-1 replication, and remained persistently activated and vulnerable to apoptosis during chronic infection.  相似文献   

7.

Background

Administration of interferon-α (IFN-α) represents an approved adjuvant therapy as reported for malignancies like melanoma and several viral infections. In malignant diseases, tolerance processes are critically involved in tumor progression. In this study, the effect of IFN-α on tolerance induction by human tolerogenic dendritic cells (DC) was analyzed. We focussed on tolerogenic IL-10-modulated DC (IL-10 DC) that are known to induce anergic regulatory T cells (iTregs).

Methodology/Principal Findings

IFN-α promoted an enhanced maturation of IL-10 DC as demonstrated by upregulation of the differentiation marker CD83 as well as costimulatory molecules. IFN-α treatment resulted in an increased capacity of DC to stimulate T cell activation compared to control tolerogenic DC. We observed a strengthened T cell proliferation and increased IFN-γ production of CD4+ and CD8+ T cells stimulated by IFN-α-DC, demonstrating a restoration of the immunogenic capacity of tolerogenic DC in the presence of IFN-α. Notably, restimulation experiments revealed that IFN-α treatment of tolerogenic DC abolished the induction of T cell anergy and suppressor function of iTregs. In contrast, IFN-α neither affected the priming of iTregs nor converted iTregs into effector T cells.

Conclusions/Significance

IFN-α inhibits the induction of T cell tolerance by reversing the tolerogenic function of human DC.  相似文献   

8.
We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation in the absence of proliferation, indicating that activation-induced cell death may cause some of the reported increase in lymphocyte turnover during SIV infection.The immune system of higher vertebrates consists of innate and adaptive components. Innate immunity exhibits immediate recognition and response without prior sensitization. Cells of the innate immune system (i.e., monocytes/macrophages, natural killer [NK] cells, and polymorphonuclear leukocytes) recognize pathogen-associated molecular patterns and activate events such as phagocytosis, induction of the synthesis of antimicrobial peptides, expression of inflammatory and effector cytokines and chemokines, induction of nitric oxide synthase in macrophages, and expression of costimulatory molecules on antigen-presenting cells. The adaptive immune system uses somatically generated antigen receptors that are clonally distributed on T and B lymphocytes. Generally, adaptive immune recognition in the absence of innate immune recognition results in inactivation of lymphocytes that express receptors involved in the identification events (20). Thus, innate immune responses have critical consequences in adaptive immune responses.Little is known of the contribution of the innate immune system during infection with the human immunodeficiency virus (HIV). Based on similarities of biologic and genetic features, simian immunodeficiency virus (SIV) infection of rhesus macaques provides the best animal model of HIV infection and AIDS. Accordingly, this animal model is critical for the elucidation of mechanisms of pathogenesis and for the development of vaccines and antiviral therapies (12). As with almost all viral infections, the innate immune system is thought to be the first component of the immune system that recognizes SIV infection. However, few studies have methodically analyzed the changes induced in cell phenotype and cytokine levels by SIV infection. Recent studies have demonstrated that SIV infection results in a generalized increase in lymphocyte turnover (23) and that the primary site for viral replication is activated memory CD4+ T cells that are present in the intestinal lamina propia (46). Although cellular changes are not that dramatic at this early stage in peripheral lymphoid tissue, peripheral blood (PB) and lymph nodes (LN) still reflect the pathologic changes induced by the viral infection and are readily available for longitudinal studies.To analyze changes in the activation state of cells from the innate and adaptive immune system after SIV infection, we evaluated NK activity, cytokine levels in plasma, and changes in activation markers on lymphoid cells of rhesus macaques after infection with pathogenic SIVmac251. We found the sequential appearance in plasma of interferon-α/β (IFN-α/β) interleukin-18 (IL-18) and IL-12, whereas IL-4, IFN-γ and granulocyte-macrophage colony-stimulating factor (GM-CSF) remained undetectable. We also found transient activation of NK cells during the peak of viral replication, and this activation was not predictive of disease progression. Finally, we observed that after SIV infection, both CD4+ and CD8+ T cells became activated in the absence of markers for proliferation, suggesting that the increased turnover of these cells reflects activation-induced cell death rather than differential compartmentalization.  相似文献   

9.

Background

Reduced CD4 T lymphocytes counts can be observed in HIV infection and in patients undergoing autologous haematopoietic stem cell transplantation (ASCT). Nevertheless, whereas opportunistic infections (OI) are frequent in HIV-infected individuals with low cell counts, OI are uncommon in ASCT patients.

Methodology/Principal Findings

To verify whether this observation could be secondary to intrinsic HIV-correlated T cell defects, we performed in-depth immunologic analyses in 10 patients with comparable CD4 counts in whom lymphopenia was secondary either to HIV-infection or ASCT-associated immunosuppressive therapy and compared them to age-matched healthy subjects. Results showed the presence of profound alterations in CD4+ T lymphocytes in both groups of patients with respect to healthy controls. Thus, a low percentage of CCR7+ CD4+ T cells and a compensative expansion of CD45RA−CCR7− CD4+ T cells, a reduced IL-2/IFN-γ cytokine production and impaired recall antigens-specific proliferative responses were detected both in ASCT and HIV patients. In stark contrast, profound differences were detected in CD8+ T-cells between the two groups of patients. Thus, mature CD8+ T cell prevailed in ASCT patients in whom significantly lower CD45RA−CCR7− cells, higher CD45RA+CCR7− CD8+ cells, and an expansion of CCR7+CD8+ cells was detected; this resulted in higher IFN-γ +/TNFα production and granzyme CD8+ expression. The presence of strong CD8 T cells mediated immune responses justifies the more favorable clinical outcome of ASCT compared to HIV patients.

Conclusion/Significance

These results indicate that CD8 T cells maturation and functions can be observed even in the face of a profound impairment of CD4+ T lymphocytes in ASCT but not in HIV patients. Primary HIV-associated CD8 defects or an imprinting by an intact CD4 T cell system in ASCT could justify these results.  相似文献   

10.
Yanaba K  Asano Y  Tada Y  Sugaya M  Kadono T  Sato S 《PloS one》2012,7(3):e34587

Background

Bortezomib is a proteasome inhibitor that has shown impressive efficacy in the treatment of multiple myeloma. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to acute colitis that can serve as an experimental animal model for human ulcerative colitis.

Methodology/Principal Findings

Bortezomib treatment was shown to potently inhibit murine DSS-induced colitis. The attenuation of DSS-induced colitis was associated with decreased inflammatory cell infiltration in the colon. Specifically, bortezomib-treated mice showed significantly decreased numbers of CD4+ and CD8+ T cells in the colon and mesenteric lymph nodes. Bortezomib treatment significantly diminished interferon (IFN)-γ expression in the colon and mesenteric lymph nodes. Furthermore, cytoplasmic IFN-γ production by CD4+ and CD8+ T cells in mesenteric lymph nodes was substantially decreased by bortezomib treatment. Notably, bortezomib enhanced T cell apoptosis by inhibiting nuclear factor-κB activation during DSS-induced colitis.

Conclusions/Significance

Bortezomib treatment is likely to induce T cell death, thereby suppressing DSS-induced colitis by reducing IFN-γ production.  相似文献   

11.
Tularemia or vaccination with the live vaccine strain (LVS) of Francisella tularensis confers long-lived cell-mediated immunity. We hypothesized that this immunity depends on polyfunctional memory T cells, i.e., CD4+ and/or CD8+ T cells with the capability to simultaneously express several functional markers. Multiparametric flow cytometry, measurement of secreted cytokines, and analysis of lymphocyte proliferation were used to characterize in vitro recall responses of peripheral blood mononuclear cells (PBMC) to killed F. tularensis antigens from the LVS or Schu S4 strains. PBMC responses were compared between individuals who had contracted tularemia, had been vaccinated, or had not been exposed to F. tularensis (naïve). Significant differences were detected between either of the immune donor groups and naïve individuals for secreted levels of IL-5, IL-6, IL-10, IL-12, IL-13, IFN-γ, MCP-1, and MIP-1β. Expression of IFN-γ, MIP-1β, and CD107a by CD4+CD45RO+ or CD8+CD45RO+ T cells correlated to antigen concentrations. In particular, IFN-γ and MIP-1β strongly discriminated between immune and naïve individuals. Only one cytokine, IL-6, discriminated between the two groups of immune individuals. Notably, IL-2- or TNF-α-secretion was low. Our results identify functional signatures of T cells that may serve as correlates of immunity and protection against F. tularensis.  相似文献   

12.
《MABS-AUSTIN》2013,5(3):697-706
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models.

We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release.

In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.  相似文献   

13.

Background

CD4+/CD8+ double positive (DP) T cells have been described in healthy individuals as well as in patients with autoimmune and chronic infectious diseases. In chronic viral infections, this cell subset has effector memory phenotype and displays antigen specificity. No previous studies of double positive T cells in parasite infections have been carried out.

Methodology/Principal Findings

Seventeen chronic chagasic patients (7 asymptomatic and 10 symptomatic) and 24 non-infected donors, including 12 healthy and 12 with non-chagasic cardiomyopathy donors were analyzed. Peripheral blood was stained for CD3, CD4, CD8, HLA-DR and CD38, and lymphocytes for intracellular perforin. Antigen specificity was assessed using HLA*A2 tetramers loaded with T. cruzi K1 or influenza virus epitopes. Surface expression of CD107 and intracellular IFN-γ production were determined in K1-specific DP T cells from 11 chagasic donors. Heart tissue from a chronic chagasic patient was stained for both CD8 and CD4 by immunochemistry. Chagasic patients showed higher frequencies of DP T cells (2.1%±0.9) compared with healthy (1.1%±0.5) and non-chagasic cardiomyopathy (1.2%±0.4) donors. DP T cells from Chagasic patients also expressed more HLA-DR, CD38 and perforin and had higher frequencies of T. cruzi K1-specific cells. IFN-γ production in K1-specific cells was higher in asymptomatic patients after polyclonal stimulation, while these cells tended to degranulate more in symptomatic donors. Immunochemistry revealed that double positive T cells infiltrate the cardiac tissue of a chagasic donor.

Conclusions

Chagasic patients have higher percentages of circulating double positive T cells expressing activation markers, potential effector molecules and greater class I antigenic specificity against T. cruzi. Although K1 tetramer positive DP T cell produced little IFN-γ, they displayed degranulation activity that was increased in symptomatic patients. Moreover, K1-specific DP T cells can migrate to the heart tissue.  相似文献   

14.

Background

Effector CD4 T cells represent a key component of the host’s anti-tuberculosis immune defense. Successful differentiation and functioning of effector lymphocytes protects the host against severe M. tuberculosis (Mtb) infection. On the other hand, effector T cell differentiation depends on disease severity/activity, as T cell responses are driven by antigenic and inflammatory stimuli released during infection. Thus, tuberculosis (TB) progression and the degree of effector CD4 T cell differentiation are interrelated, but the relationships are complex and not well understood. We have analyzed an association between the degree of Mtb-specific CD4 T cell differentiation and severity/activity of pulmonary TB infection.

Methodology/Principal Findings

The degree of CD4 T cell differentiation was assessed by measuring the percentages of highly differentiated CD27low cells within a population of Mtb- specific CD4 T lymphocytes (“CD27lowIFN-γ+” cells). The percentages of CD27lowIFN-γ+ cells were low in healthy donors (median, 33.1%) and TB contacts (21.8%) but increased in TB patients (47.3%, p<0.0005). Within the group of patients, the percentages of CD27lowIFN-γ+ cells were uniformly high in the lungs (>76%), but varied in blood (12–92%). The major correlate for the accumulation of CD27lowIFN-γ+ cells in blood was lung destruction (r = 0.65, p = 2.7×10−7). A cutoff of 47% of CD27lowIFN-γ+ cells discriminated patients with high and low degree of lung destruction (sensitivity 89%, specificity 74%); a decline in CD27lowIFN-γ+cells following TB therapy correlated with repair and/or reduction of lung destruction (p<0.01).

Conclusions

Highly differentiated CD27low Mtb-specific (CD27lowIFN-γ+) CD4 T cells accumulate in the lungs and circulate in the blood of patients with active pulmonary TB. Accumulation of CD27lowIFN-γ+ cells in the blood is associated with lung destruction. The findings indicate that there is no deficiency in CD4 T cell differentiation during TB; evaluation of CD27lowIFN-γ+ cells provides a valuable means to assess TB activity, lung destruction, and tissue repair following TB therapy.  相似文献   

15.
Zou Q  Yao X  Feng J  Yin Z  Flavell R  Hu Y  Zheng G  Jin J  Kang Y  Wu B  Liang X  Feng C  Liu H  Li W  Wang X  Wen Y  Wang B 《PloS one》2011,6(10):e25525

Background

CD8+ cytotoxic T lymphocytes (CTLs) are crucial for eliminating hepatitis B virus (HBV) infected cells. DNA vaccination, a novel therapeutic strategy for chronic virus infection, has been shown to induce CTL responses. However, accumulated data have shown that CTLs could not be effectively induced by HBV DNA vaccination.

Methodology/Principal Findings

Here, we report that praziquantel (PZQ), an anti-schistoma drug, could act as an adjuvant to overcome the lack of potent CTL responses by HBV DNA vaccination in mice. PZQ in combination with HBV DNA vaccination augmented the induction of CD8+ T cell-dependent and HBV-specific delayed hypersensitivity responses (DTH) in C57BL/6 mice. Furthermore, the induced CD8+ T cells consisted of both Tc1 and Tc17 subtypes. By using IFN-γ knockout (KO) mice and IL-17 KO mice, both cytokines were found to be involved in the DTH. The relevance of these findings to HBV immunization was established in HBsAg transgenic mice, in which PZQ also augmented the induction of HBV-specific Tc1 and Tc17 cells and resulted in reduction of HBsAg positive hepatocytes. Adoptive transfer experiments further showed that PZQ-primed CD8+ T cells from wild type mice, but not the counterpart from IFN-γ KO or IL-17 KO mice, resulted in elimination of HBsAg positive hepatocytes.

Conclusions/Significance

Our results suggest that PZQ is an effective adjuvant to facilitate Tc1 and Tc17 responses to HBV DNA vaccination, inducing broad CD8+ T cell-based immunotherapy that breaks tolerance to HBsAg.  相似文献   

16.
Conventional assays for quantification of allo-reactive T-cell precursor frequencies (PF) are relatively insensitive. We present a robust assay for quantification of PF of T-cells with direct donor-specificity, and establish the kinetics of circulating donor-specific T cells after liver transplantation (LTx). B cells from donor splenocytes were differentiated into professional antigen-presenting cells by CD40-engagement (CD40-B cells). CFSE-labelled PBMC from LTx-recipients obtained before and at several time points after LTx, were stimulated with donor-derived or 3rd party CD40-B cells. PF of donor-specific T cells were calculated from CFSE-dilution patterns, and intracellular IFN-γ was determined after re-stimulation with CD40-B cells. Compared to splenocytes, stimulations with CD40-B cells resulted in 3 to 5-fold higher responding T-cell PF. Memory and naïve T-cell subsets responded equally to allogeneic CD40-B cell stimulation. Donor-specific CD4+ and CD8+ T-cell PF ranged from 0.5 to 19% (median: 5.2%). One week after LTx, PF of circulating donor-specific CD4+ and CD8+ T cells increased significantly, while only a minor increase in numbers of T cells reacting to 3rd party allo-antigens was observed. One year after LTx numbers of CD4+ and CD8+ T cells reacting to donor antigens, as well as those reacting to 3rd party allo-antigens, were slightly lower compared to pre-transplant values. Moreover, CD4+ and CD8+ T cells responding to donor-derived, as well as those reacting to 3rd party CD40-B cells, produced less IFN-γ. In conclusion, our alternative approach enables detection of allo-reactive human T cells at high frequencies, and after application we conclude that donor-specific T-cell PF increase immediately after LTx. However, no evidence for a specific loss of circulating T-cells recognizing donor allo-antigens via the direct pathway up to 1 year after LTx was obtained, underscoring the relative insensitiveness of previous assays.  相似文献   

17.
18.

Background

Various immunotherapeutic strategies for cancer are aimed at augmenting the T cell response against tumor cells. Adoptive cell therapy (ACT), where T cells are manipulated ex vivo and subsequently re-infused in an autologous manner, has been performed using T cells from various sources. Some of the highest clinical response rates for metastatic melanoma have been reported in trials using tumor-infiltrating lymphocytes (TILs). These protocols still have room for improvement and furthermore are currently only performed at a limited number of institutions. The goal of this work was to develop TILs as a therapeutic product at our institution.

Principal Findings

TILs from 40 melanoma tissue specimens were expanded and characterized. Under optimized culture conditions, 72% of specimens yielded rapidly proliferating TILs as defined as at least one culture reaching ≥3×107 TILs within 4 weeks. Flow cytometric analyses showed that cultures were predominantly CD3+ T cells, with highly variable CD4+:CD8+ T cell ratios. In total, 148 independent bulk TIL cultures were assayed for tumor reactivity. Thirty-four percent (50/148) exhibited tumor reactivity based on IFN-γ production and/or cytotoxic activity. Thirteen percent (19/148) showed specific cytotoxic activity but not IFN-γ production and only 1% (2/148) showed specific IFN-γ production but not cytotoxic activity. Further expansion of TILs using a 14-day “rapid expansion protocol” (REP) is required to induce a 500- to 2000-fold expansion of TILs in order to generate sufficient numbers of cells for current ACT protocols. Thirty-eight consecutive test REPs were performed with an average 1865-fold expansion (+/− 1034-fold) after 14 days.

Conclusions

TILs generally expanded efficiently and tumor reactivity could be detected in vitro. These preclinical data from melanoma TILs lay the groundwork for clinical trials of ACT.  相似文献   

19.
20.
Gao X  Zhu Y  Li G  Huang H  Zhang G  Wang F  Sun J  Yang Q  Zhang X  Lu B 《PloS one》2012,7(2):e30676

Background

T cell immunoglobulin-3 (TIM-3) has been established as a negative regulatory molecule and plays a critical role in immune tolerance. TIM-3 is upregulated in exhausted CD8+ T cells in both chronic infection and tumor. However, the nature of TIM-3+CD4+ T cells in the tumor microenvironment is unclear. This study is to characterize TIM-3 expressing lymphocytes within human lung cancer tissues and establish clinical significance of TIM-3 expression in lung cancer progression.

Methodology

A total of 51 human lung cancer tissue specimens were obtained from pathologically confirmed and newly diagnosed non-small cell lung cancer (NSCLC) patients. Leukocytes from tumor tissues, distal normal lung tissues, and peripheral blood mononuclear cells (PBMC) were analyzed for TIM-3 surface expression by flow cytometry. TIM-3 expression on tumor-infiltrating lymphocytes (TILs) was correlated with clinicopathological parameters.

Conclusions

TIM-3 is highly upregulated on both CD4+ and CD8+ TILs from human lung cancer tissues but negligibly expressed on T cells from patients'' peripheral blood. Frequencies of IFN-γ+ cells were reduced in TIM-3+CD8+ TILs compared to TIM-3CD8+ TILs. However, the level of TIM-3 expression on CD8+ TILs failed to associate with any clinical pathological parameter. Interestingly, we found that approximately 70% of TIM-3+CD4+ TILs expressed FOXP3 and about 60% of FOXP3+ TILs were TIM-3+. Importantly, TIM-3 expression on CD4+ T cells correlated with poor clinicopathological parameters of NSCLC such as nodal metastasis and advanced cancer stages. Our study reveals a new role of TIM-3 as an important immune regulator in the tumor microenvironment via its predominant expression in regulatory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号